Design of an electrochemical sensing platform based on MoS2-PEDOT:PSS nanocomposite for the detection of epirubicin in biological samples

Yükleniyor...
Küçük Resim

Tarih

2023

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Inc.

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Synthesizing of two dimensional (2D)-based nanomaterial and its sensing platform design is an attractive approach for quantitative purposed electrochemical applications. In this work, for the first time, we synthesized the molybdenum disulphide (CE-MoS2) nanosheets exfoliated by metal intercalation method and followed by the modification of their surfaces with Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) as a conductive polymer. The structural, morphological, and electrochemical characterization of CE-MoS2/PEDOT: PSS nanocomposite were performed by XPS, TGA, TEM and EIS. The portable electrochemical sensing platform was fabricated by the modification of CE-MoS2/PEDOT:PSS nanocomposite on screen-printed carbon electrode (SPCE). The electrochemical behaviour of epirubicin (EPB) was examined on SPCE modified with CE-MoS2/ PEDOT:PSS nanocomposite using cyclic and differential pulse voltammetry. CE-MoS2/PEDOT:PSS/SPCE demonstrated a promising electrocatalytic activity towards the oxidation of EPB, and analytical performance in the concentration range of 0.06 – 9.30 µM with a low detection limit of 44.3 nM. The human plasma samples containing EPB were successfully analyzed using CE-MoS2/PEDOT:PSS/SPCE with the satisfactory recoveries. The proposed sensing design could be an alternative strategy to produce the 2D-based nanoplatforms for electroanalytical applications in clinical samples.

Açıklama

Anahtar Kelimeler

MoS2, PEDOT:PSS, Electrochemical sensor, Surface modification, Epirubicin

Kaynak

Microchemical Journal

WoS Q Değeri

N/A

Scopus Q Değeri

Q1

Cilt

Sayı

189

Künye

Er, E. ve Ateş, A. K. (2023). Design of an electrochemical sensing platform based on MoS2-PEDOT:PSS nanocomposite for the detection of epirubicin in biological samples. Microchemical Journal, (189), 1-8.