First principle calculations of structural, electronic, and optical properties of XSnO3 (X: Ca, Mg, Sr) perovskite oxides
[ X ]
Tarih
2025
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Iop Publishing Ltd
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
The perovskite oxides XSnO3 have garnered significant attention due to their potential applications in various fields, including electronics, photonics, and renewable energy technologies. This study presents a comprehensive theoretical investigation of the structural, electronic, and optical properties of XSnO3 (X: Ca, Mg, Sr) compounds with density functional theory based on the full potential linearized augmented plane wave method. Our analysis begins with thoroughly examining the structural stability and lattice parameters of XSnO3 compounds, revealing their robust perovskite crystal structures. These compounds' lattice constants, total energy, bulk modulus, and cohesive energy were determined. Subsequently, we delve into the electronic properties of XSnO3, elucidating their electronic band structures, density of states, and charge densities. The studied compounds are indirect bandgap semiconductors having band gaps in the visible range. Furthermore, our investigation extends to the optical properties of XSnO3, encompassing absorption spectra, refractive indices, energy loss function, reflectivity, extinction coefficient, and dielectric functions across a wide range of wavelengths. Overall, the excellent optical properties of these compounds make them suitable for optoelectronic applications.
Açıklama
Anahtar Kelimeler
DFT, perovskite oxides, XSnO3, density of states
Kaynak
Journal of Physics-Condensed Matter
WoS Q Değeri
Q3
Scopus Q Değeri
Q2
Cilt
37
Sayı
7