Automatic recognition of alertness level by using wavelet transform and artificial neural network

[ X ]

Tarih

2004

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

We propose a novel method for automatic recognition of alertness level from full spectrum electroencephalogram (EEG) recordings. This procedure uses power spectral density (PSD) of discrete wavelet transform (DWT) of full spectrum EEG as an input to an artificial neural network (ANN) with three discrete outputs: alert, drowsy and sleep. The error back propagation neural network is selected as a classifier to discriminate the alertness level of a subject. EEG signals were obtained from 30 healthy subjects. The group consisted of 14 females and 16 males with ages ranging from 18 to 65 years and a mean age of 33.5 years, and a body mass index (BMI) of 32.4 +/- 7.3 kg/m(2). Alertness level and classification properties of ANN were tested using the data recorded in 12 healthy subjects, whereby the EEG recordings were not used been used to train the ANN. The statistics were used as a measure of potential applicability of the ANN. The accuracy of the ANN was 96 3% alert, 95 +/- 4% drowsy and 94 +/- 5% sleep. The results suggest that the automatic recognition algorithm is applicable for distinguishing between alert, drowsy and sleep state in recordings that have not been used for the training. (C) 2004 Elsevier B.V. All rights reserved.

Açıklama

Anahtar Kelimeler

Alert, Drowsy, Sleep, Electroencephalogram (Eeg), Discrete Wavelet Transform (Dwt), Artificial Neural Network (Ann), Power Spectral Density (Psd)

Kaynak

Journal of Neuroscience Methods

WoS Q Değeri

Q3

Scopus Q Değeri

Q2

Cilt

139

Sayı

2

Künye