Effect on model performance of regularization methods
dc.authorid | 0000-0002-8470-4579 | en_US |
dc.authorid | 0000-0002-3769-0071 | en_US |
dc.authorid | 0000-0003-4585-4168 | en_US |
dc.contributor.author | Budak, Cafer | |
dc.contributor.author | Mençik, Vasfiye | |
dc.contributor.author | Asker, Mehmet Emin | |
dc.date.accessioned | 2022-01-28T12:56:04Z | |
dc.date.available | 2022-01-28T12:56:04Z | |
dc.date.issued | 2021 | en_US |
dc.department | Dicle Üniversitesi, Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü | en_US |
dc.description.abstract | Artificial Neural Networks with numerous parameters are tremendously powerful machine learning systems. Nonetheless, overfitting is a crucial problem in such networks. Maximizing the model accuracy and minimizing the amount of loss is significant in reducing in-class differences and maintaining sensitivity to these differences. In this study, the effects of overfitting for different model architectures with the Wine dataset were investigated by Dropout, AlfaDropout, GausianDropout, Batch normalization, Layer normalization, Activity normalization, L1 and L2 regularization methods and the change in loss function the combination with these methods. Combinations that performed well were examined on different datasets using the same model. The binary cross-entropy loss function was used as a performance measurement metric. According to the results, the Layer and Activity regularization combination showed better training and testing performance compared to other combinations. | en_US |
dc.identifier.citation | Budak, C., Mençik, V. ve Asker, M. E. (2021). Effect on model performance of regularization methods. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 12(5), 757-765. | en_US |
dc.identifier.doi | 10.24012/dumf.1051352 | |
dc.identifier.endpage | 765 | en_US |
dc.identifier.issn | 1309-8640 | |
dc.identifier.issn | 2146-4391 | |
dc.identifier.issue | 5 | en_US |
dc.identifier.startpage | 757 | en_US |
dc.identifier.trdizinid | 498862 | |
dc.identifier.uri | https://dergipark.org.tr/tr/download/article-file/2167595 | |
dc.identifier.uri | https://hdl.handle.net/11468/9117 | |
dc.identifier.uri | https://search.trdizin.gov.tr/yayin/detay/498862 | |
dc.identifier.volume | 12 | en_US |
dc.indekslendigikaynak | TR-Dizin | |
dc.institutionauthor | Budak, Cafer | |
dc.institutionauthor | Mençik, Vasfiye | |
dc.institutionauthor | Asker, Mehmet Emin | |
dc.language.iso | en | en_US |
dc.publisher | Dicle Üniversitesi Mühendislik Fakültesi | en_US |
dc.relation.ispartof | Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi | |
dc.relation.publicationcategory | Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Overfitting | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Regularization | en_US |
dc.title | Effect on model performance of regularization methods | en_US |
dc.title | Effect on model performance of regularization methods | |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- Effect on model performance of regularization methods.pdf
- Boyut:
- 788.32 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Makale Dosyası
Lisans paketi
1 - 1 / 1
[ X ]
- İsim:
- license.txt
- Boyut:
- 1.44 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: