Effect on model performance of regularization methods

Yükleniyor...
Küçük Resim

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Dicle Üniversitesi Mühendislik Fakültesi

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Artificial Neural Networks with numerous parameters are tremendously powerful machine learning systems. Nonetheless, overfitting is a crucial problem in such networks. Maximizing the model accuracy and minimizing the amount of loss is significant in reducing in-class differences and maintaining sensitivity to these differences. In this study, the effects of overfitting for different model architectures with the Wine dataset were investigated by Dropout, AlfaDropout, GausianDropout, Batch normalization, Layer normalization, Activity normalization, L1 and L2 regularization methods and the change in loss function the combination with these methods. Combinations that performed well were examined on different datasets using the same model. The binary cross-entropy loss function was used as a performance measurement metric. According to the results, the Layer and Activity regularization combination showed better training and testing performance compared to other combinations.

Açıklama

Anahtar Kelimeler

Overfitting, Machine learning, Regularization

Kaynak

Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi

WoS Q Değeri

Scopus Q Değeri

Cilt

12

Sayı

5

Künye

Budak, C., Mençik, V. ve Asker, M. E. (2021). Effect on model performance of regularization methods. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 12(5), 757-765.