DYNNIKOV AND TRAIN TRACK TRANSITION MATRICES OF PSEUDO-ANOSOV BRAIDS

dc.contributor.authorYurttas, S. Oyku
dc.date.accessioned2024-04-24T17:21:17Z
dc.date.available2024-04-24T17:21:17Z
dc.date.issued2016
dc.departmentDicle Üniversitesien_US
dc.description.abstractWe compare the spectra of Dynnikov matrices with the spectra of the train track transition matrices of a given pseudo-Anosov braid on the finitely punctured disk, and show that these matrices are isospectral up to roots of unity and zeros under some particular conditions. It is shown, via examples, that Dynnikov matrices are much easier to compute than transition matrices, and so yield data that was previously inaccessible.en_US
dc.identifier.doi10.3934/dcds.2016.36.541
dc.identifier.endpage570en_US
dc.identifier.issn1078-0947
dc.identifier.issn1553-5231
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-84942279143
dc.identifier.scopusqualityQ1
dc.identifier.startpage541en_US
dc.identifier.urihttps://doi.org/10.3934/dcds.2016.36.541
dc.identifier.urihttps://hdl.handle.net/11468/19430
dc.identifier.volume36en_US
dc.identifier.wosWOS:000360924100024
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoenen_US
dc.publisherAmer Inst Mathematical Sciences-Aimsen_US
dc.relation.ispartofDiscrete and Continuous Dynamical Systems
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject[No Keyword]en_US
dc.titleDYNNIKOV AND TRAIN TRACK TRANSITION MATRICES OF PSEUDO-ANOSOV BRAIDSen_US
dc.titleDYNNIKOV AND TRAIN TRACK TRANSITION MATRICES OF PSEUDO-ANOSOV BRAIDS
dc.typeArticleen_US

Dosyalar