DYNNIKOV AND TRAIN TRACK TRANSITION MATRICES OF PSEUDO-ANOSOV BRAIDS
[ X ]
Tarih
2016
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Amer Inst Mathematical Sciences-Aims
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
We compare the spectra of Dynnikov matrices with the spectra of the train track transition matrices of a given pseudo-Anosov braid on the finitely punctured disk, and show that these matrices are isospectral up to roots of unity and zeros under some particular conditions. It is shown, via examples, that Dynnikov matrices are much easier to compute than transition matrices, and so yield data that was previously inaccessible.
Açıklama
Anahtar Kelimeler
[No Keyword]
Kaynak
Discrete and Continuous Dynamical Systems
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
36
Sayı
1