Extreme learning machine (ELM)-based classification of benign and malignant cells in breast cancer

Yükleniyor...
Küçük Resim

Tarih

2018

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

International Scientific Information, Inc.

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Background: Breast cancer is one of the most common cancer types in the world and is a serious threat to health. This type of cancer is complex; it is a hereditary disease and does not result from a single cause. The diagnosis of cancer starts with a biopsy. Various methods are used to detect and recognize cancer cells, from microscopic images and mammography to ultrasonography and magnetic resonance images (MRI). Material/Methods: Detection and characterization of benign and malignant cells by image-processing-based segmentation for breast cancer diagnosis is important for early diagnosis. In the present study, Extreme Learning Machine (ELM) classification was performed for 9 features based on image segmentation in the Breast Cancer Wisconsin (Diagnostic) data set in the UC Irvine Machine Learning Repository database. Results: The results obtained with the developed method were compared with the results of other machine learning methods (Naive Bayes, Support Vector Machine, and Artificial Neural Network) and it showed the highest performance, with a result of 98.99%. Conclusions: It was found that both accuracy and speed were good. We present a method that can be applied in cell morphology detection and classification in automated systems that classify by computer-aided mammogram image features.

Açıklama

PMID: 30222727

Anahtar Kelimeler

Breast neoplasms, Classification, Diagnosis

Kaynak

Medical Science Monitor

WoS Q Değeri

Q3

Scopus Q Değeri

Q1

Cilt

24

Sayı

Künye

Toprak, A. (2018). Extreme learning machine (ELM)-based classification of benign and malignant cells in breast cancer. Medical Science Monitor, 24, 6537-6543.