On a general weighted Hardy type inequality in the variable exponent Lebesgue spaces

[ X ]

Tarih

2012

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer-Verlag Italia Srl

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

We study the Hardy type, two-weight inequality for the multidimensional Hardy operator in the variable exponent Lebesgue space L (p(.))(R-n ). We prove equivalent conditions for L-p(.) -> L-q(.) boundness of the Hardy operator in the case of so called mixed exponents: q(0) >= p(0), q(infinity) < p (infinity) or q(0) < p(0), q(infinity) >= p(infinity). We show that a necessary and sufficient condition for such an inequality to hold coincides with conditions for the validity of two weight Hardy inequalities with constant exponents, provided that the exponents are regular at zero and at infinity.

Açıklama

Anahtar Kelimeler

Hardy Operator, Hardy Inequality, Variable Exponent Lebesgue Space, Weighted Norm Inequality

Kaynak

Revista Matematica Complutense

WoS Q Değeri

Q4

Scopus Q Değeri

Q1

Cilt

25

Sayı

2

Künye