On a general weighted Hardy type inequality in the variable exponent Lebesgue spaces
[ X ]
Tarih
2012
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer-Verlag Italia Srl
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
We study the Hardy type, two-weight inequality for the multidimensional Hardy operator in the variable exponent Lebesgue space L (p(.))(R-n ). We prove equivalent conditions for L-p(.) -> L-q(.) boundness of the Hardy operator in the case of so called mixed exponents: q(0) >= p(0), q(infinity) < p (infinity) or q(0) < p(0), q(infinity) >= p(infinity). We show that a necessary and sufficient condition for such an inequality to hold coincides with conditions for the validity of two weight Hardy inequalities with constant exponents, provided that the exponents are regular at zero and at infinity.
Açıklama
Anahtar Kelimeler
Hardy Operator, Hardy Inequality, Variable Exponent Lebesgue Space, Weighted Norm Inequality
Kaynak
Revista Matematica Complutense
WoS Q Değeri
Q4
Scopus Q Değeri
Q1
Cilt
25
Sayı
2