Geometric intersection of curves on punctured disks

dc.contributor.authorYurttas, S. Oyku
dc.date.accessioned2024-04-24T17:20:24Z
dc.date.available2024-04-24T17:20:24Z
dc.date.issued2013
dc.departmentDicle Üniversitesien_US
dc.description.abstractWe give a recipe to compute the geometric intersection number of an integral lamination with a particular type of integral lamination on an n-times punctured disk. This provides a way to find the geometric intersection number of two arbitrary integral laminations when combined with an algorithm of Dynnikov and Wiest.en_US
dc.identifier.doi10.2969/jmsj/06541153
dc.identifier.endpage1168en_US
dc.identifier.issn0025-5645
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-84890957203
dc.identifier.scopusqualityQ2
dc.identifier.startpage1153en_US
dc.identifier.urihttps://doi.org/10.2969/jmsj/06541153
dc.identifier.urihttps://hdl.handle.net/11468/19018
dc.identifier.volume65en_US
dc.identifier.wosWOS:000330417400007
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoenen_US
dc.publisherMath Soc Japanen_US
dc.relation.ispartofJournal of The Mathematical Society of Japan
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGeometric Intersectionen_US
dc.subjectDynnikov Coordinatesen_US
dc.titleGeometric intersection of curves on punctured disksen_US
dc.titleGeometric intersection of curves on punctured disks
dc.typeArticleen_US

Dosyalar