Prediction of penetration depth in a plunging water jet using soft computing approaches

[ X ]

Tarih

2014

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer London Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

The flow characteristics of the plunging water jets can be defined as volumetric air entrainment rate, bubble penetration depth, and oxygen transfer efficiency. In this study, the bubble penetration depth is evaluated based on four major parameters that describe air entrainment at the plunge point: the nozzle diameter (D (N)), jet length (L (j)), jet velocity (V (N)), and jet impact angle (theta). This study presents artificial neural network (ANN) and genetic expression programming (GEP) model, which is an extension to genetic programming, as an alternative approach to modeling of the bubble penetration depth by plunging water jets. A new formulation for prediction of penetration depth in a plunging water jets is developed using GEP. The GEP-based formulation and ANN approach are compared with experimental results, multiple linear/nonlinear regressions, and other equations. The results have shown that the both ANN and GEP are found to be able to learn the relation between the bubble penetration depth and basic water jet properties. Additionally, sensitivity analysis is performed for ANN, and it is found that D (N) is the most effective parameter on the bubble penetration depth.

Açıklama

Anahtar Kelimeler

Penetration Depth, Genetic Expression Programming (Gep), Artificial Neural Network (Ann), Regression Analysis

Kaynak

Neural Computing & Applications

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

25

Sayı

1

Künye