INTERSECTIONS OF MULTICURVES FROM DYNNIKOV COORDINATES

dc.contributor.authorYurttas, S. Oyku
dc.contributor.authorHall, Toby
dc.date.accessioned2024-04-24T16:19:02Z
dc.date.available2024-04-24T16:19:02Z
dc.date.issued2018
dc.departmentDicle Üniversitesien_US
dc.description.abstractWe present an algorithm for calculating the geometric intersection number of two multicurves on the n-punctured disk, taking as input their Dynnikov coordinates. The algorithm has complexity O(m(2)n(4)), where m is the sum of the absolute values of the Dynnikov coordinates of the two multicurves. The main ingredient is an algorithm due to Cumplido for relaxing a multicurve.en_US
dc.identifier.doi10.1017/S0004972718000308
dc.identifier.endpage158en_US
dc.identifier.issn0004-9727
dc.identifier.issn1755-1633
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85046476957
dc.identifier.scopusqualityQ3
dc.identifier.startpage149en_US
dc.identifier.urihttps://doi.org/10.1017/S0004972718000308
dc.identifier.urihttps://hdl.handle.net/11468/16375
dc.identifier.volume98en_US
dc.identifier.wosWOS:000437215500018
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoenen_US
dc.publisherCambridge Univ Pressen_US
dc.relation.ispartofBulletin of The Australian Mathematical Society
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGeometric Intersectionen_US
dc.subjectMulticurvesen_US
dc.subjectPunctured Disken_US
dc.subjectDynnikov Coordinatesen_US
dc.titleINTERSECTIONS OF MULTICURVES FROM DYNNIKOV COORDINATESen_US
dc.titleINTERSECTIONS OF MULTICURVES FROM DYNNIKOV COORDINATES
dc.typeArticleen_US

Dosyalar