Biomedical image segmentation with modified U-Net
Tarih
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Özet
Image segmentation is an important field in image processing and computer vision, particularly in the development of methods to assist experts in the biomedical and medical fields. It plays a vital role in saving time and costs. One of the mostsuccessful and significant methods in image segmentation using deep learning is the U-Net model. In this paper, we propose U-Net11, a novel variant of U-Net that uses 11 convolutional layers and introduces some modifications to improve the segmentation performance. The classical U-Net model was developed and tested on three different datasets, outperforming the traditional U-Net approach. The U-Net11 model was evaluated for breast cancer segmentation, lung segmentation from CT images, and the nuclei segmentation dataset from the Data Science Bowl 2018 competition. These datasets are valuable due to their varying image quantities and the varying difficulty levels in segmentation tasks. The modified U-Net model has achieved Dice Similarity Coefficient scores of 69.09% on the breast cancer dataset, 95.02% on the lung segmentation dataset and 81.10% on the nuclei segmentation dataset, exceeding the performance of the classical U-Net model by 5%, 2% and 4% respectively. This difference in success rates is particularly significant for critical segmentation datasets.