Three Solutions to a Neumann Problem for Elliptic Equations with Variable Exponent
dc.contributor.author | Mashiyev, R. A. | |
dc.date.accessioned | 2024-04-24T16:10:36Z | |
dc.date.available | 2024-04-24T16:10:36Z | |
dc.date.issued | 2011 | |
dc.department | Dicle Üniversitesi | en_US |
dc.description.abstract | In this article, we study the following nonlinear Neumann boundary value problem {(partial derivative u/partial derivative v) (-div(vertical bar del u vertical bar p(x)-2 del u) + a(x)vertical bar u vertical bar p(x)-2u = lambda f(x, u)) (on x is an element of partial derivative Omega) (in x is an element of Omega) where Omega subset of R-N (N >= 3), Omega is a bounded smooth domain and, p is an element of C ((Omega) over bar) with inf(x is an element of(Omega) over bar) p(x) > N, f : R -> R is a continuous function, and nu is the unit normal exterior vector on partial derivative Omega and a is an element of L-8(Omega), with ess infa(x) = a(0) > 0 and lambda > 0 is a real number. We first deal with the case that f (t) = b vertical bar t vertical bar(q-2)t - d vertical bar t vertical bar(s-2)t, t is an element of R, where b and d are positive constants. Then we deal with the case that f (x, t) = vertical bar t vertical bar(q(x)-2)t - vertical bar t vertical bar(s(x)-2)t, x is an element of Omega, t is an element of R, where q, s is an element of C ((Omega) over bar). Using the direct Ricceri variational principle, we establish the existence of at least three weak solutions of this problem in weighted-variable-exponent Sobolev space W-a(1,p(x)) (Omega). | en_US |
dc.identifier.doi | 10.1007/s13369-011-0141-x | |
dc.identifier.endpage | 1567 | en_US |
dc.identifier.issn | 2193-567X | |
dc.identifier.issn | 2191-4281 | |
dc.identifier.issue | 8 | en_US |
dc.identifier.scopus | 2-s2.0-83755195877 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 1559 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s13369-011-0141-x | |
dc.identifier.uri | https://hdl.handle.net/11468/14944 | |
dc.identifier.volume | 36 | en_US |
dc.identifier.wos | WOS:000298294200008 | |
dc.identifier.wosquality | Q3 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | en_US |
dc.publisher | Springer Heidelberg | en_US |
dc.relation.ispartof | Arabian Journal For Science and Engineering | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | P(X)-Laplacian | en_US |
dc.subject | Variable Exponent Lebesgue And Sobolev Spaces | en_US |
dc.subject | Ricceri Variational Principle | en_US |
dc.title | Three Solutions to a Neumann Problem for Elliptic Equations with Variable Exponent | en_US |
dc.title | Three Solutions to a Neumann Problem for Elliptic Equations with Variable Exponent | |
dc.type | Article | en_US |