New computational methods for classification problems in the existence of outliers based on conic quadratic optimization
dc.authorid | 0000-0001-7204-8861 | en_US |
dc.contributor.author | Özkurt, Fatma Yerlikaya | |
dc.contributor.author | Taylan, Pakize | |
dc.date.accessioned | 2024-04-05T11:20:39Z | |
dc.date.available | 2024-04-05T11:20:39Z | |
dc.date.issued | 2020 | en_US |
dc.department | Dicle Üniversitesi, Fen Fakültesi, Matematik Bölümü | en_US |
dc.description.abstract | Most of the statistical research involves classification which is a procedure utilized to establish prediction models to set apart and classify new observations in the dataset from every fields of science, technology, and economics. However, these models may give misclassification results when dataset contains outliers (extreme data points). Therefore, we dealt with outliers in classification problem: firstly, by combining robustness of mean-shift outlier model and then stability of Tikhonov regularization based on continuous optimization method called Conic Quadratic Programming. These new methodologies are performed on classification dataset within the existence of outliers, and the results are compared with parametric model by using well-known performance measures. | en_US |
dc.identifier.citation | Özkurt, F. Y. ve Taylan, P. (2020). New computational methods for classification problems in the existence of outliers based on conic quadratic optimization. Communications in Statistics: Simulation and Computation, 49(3), 753-770. | en_US |
dc.identifier.doi | 10.1080/03610918.2019.1661477 | en_US |
dc.identifier.endpage | 770 | en_US |
dc.identifier.issn | 0361-0918 | |
dc.identifier.issue | 3 | en_US |
dc.identifier.scopus | 2-s2.0-85073816123 | en_US |
dc.identifier.scopusquality | Q3 | en_US |
dc.identifier.startpage | 753 | en_US |
dc.identifier.uri | https://www.tandfonline.com/doi/full/10.1080/03610918.2019.1661477 | |
dc.identifier.uri | https://hdl.handle.net/11468/13854 | |
dc.identifier.volume | 49 | en_US |
dc.identifier.wos | WOS:000486705000001 | |
dc.identifier.wosquality | Q4 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | Taylan, Pakize | |
dc.language.iso | en | en_US |
dc.publisher | Taylor and Francis Inc. | en_US |
dc.relation.ispartof | Communications in Statistics: Simulation and Computation | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Classification | en_US |
dc.subject | Convex programming | en_US |
dc.subject | Robust estimator | en_US |
dc.subject | Tikhonov regularization | en_US |
dc.subject | Mean -shift outlier model | en_US |
dc.title | New computational methods for classification problems in the existence of outliers based on conic quadratic optimization | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
[ X ]
- İsim:
- New computational methods for classification problems in the existence of outliers based on conic quadratic optimization.pdf
- Boyut:
- 2.16 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Makale Dosyası
Lisans paketi
1 - 1 / 1
[ X ]
- İsim:
- license.txt
- Boyut:
- 1.44 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: