A composite method based on delta-shaped basis functions and Lie group high-order geometric integrator for solving Kawahara-type equations

dc.contributor.authorOruç, Ömer
dc.contributor.authorPolat, Murat
dc.contributor.orcid0000-0002-6655-3543
dc.contributor.orcid0000-0003-1846-0817
dc.date.accessioned2024-04-24T15:59:30Z
dc.date.available2024-04-24T15:59:30Z
dc.date.issued2023
dc.departmentDicle Üniversitesi, Fen Fakültesi, Matematik Bölümüen_US
dc.description.abstractIn this paper, we devise a novel method to solve Kawahara-type equations numerically. In this novel method, for spatial discretization, we use delta-shaped basis functions and generate differentiation matrices for spatial derivatives of the Kawahara-type equations. For discretization of temporal variable, we utilize a high-order geometric numerical integrator based on Lie group methods. For illustration of efficiency of the suggested method, we consider some test problems. We calculate errors and make some comparisons with other results that exist in literature. We also report changes in conservation laws during numerical simulations, and we indicate that the suggested method can preserve the conservation laws pretty good. Outcomes of numerical simulations indicate that the suggested method in this paper is reliable and effective for nonlinear partial differential equations (PDEs).en_US
dc.description.sponsorshipThis work does not have any conflicts of interest.en_US
dc.description.sponsorshipThe author(s) received no funding for this work.r This work does not have any conflicts of interest.en_US
dc.identifier.citationOruç, Ö. ve Polat, M. (2023). A composite method based on delta-shaped basis functions and Lie group high-order geometric integrator for solving Kawahara-type equations. Mathematical Methods in the Applied Sciences, 46(17), 18150-18165.
dc.identifier.doi10.1002/mma.9550
dc.identifier.endpage18165en_US
dc.identifier.issn0170-4214
dc.identifier.issn1099-1476
dc.identifier.issue17en_US
dc.identifier.scopus2-s2.0-85170060907
dc.identifier.scopusqualityQ1
dc.identifier.startpage18150en_US
dc.identifier.urihttps://doi.org/10.1002/mma.9550
dc.identifier.urihttps://hdl.handle.net/11468/14106
dc.identifier.urihttps://onlinelibrary.wiley.com/doi/10.1002/mma.9550
dc.identifier.volume46en_US
dc.identifier.wosWOS:001059274900001
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorOruç, Ömer
dc.institutionauthorPolat, Murat
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.ispartofMathematical Methods in The Applied Sciences
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDelta-Shaped basis functionsen_US
dc.subjectGeometric integratoren_US
dc.subjectGroup preserving schemeen_US
dc.subjectKawahara-Type equationsen_US
dc.titleA composite method based on delta-shaped basis functions and Lie group high-order geometric integrator for solving Kawahara-type equationsen_US
dc.titleA composite method based on delta-shaped basis functions and Lie group high-order geometric integrator for solving Kawahara-type equations
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
A composite method based on delta-shaped basis functions and Lie group high-order geometric integrator for solving Kawahara-type equations.pdf
Boyut:
2.14 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Makale Dosyası