Solutions to semilinear p-Laplacian Dirichlet problem in population dynamics
dc.contributor.author | Mashiyev, R. A. | |
dc.contributor.author | Alisoy, G. | |
dc.contributor.author | Ogras, S. | |
dc.date.accessioned | 2024-04-24T16:02:05Z | |
dc.date.available | 2024-04-24T16:02:05Z | |
dc.date.issued | 2010 | |
dc.department | Dicle Üniversitesi | en_US |
dc.description.abstract | In this article, we study a semilinear p-Laplacian Dirichlet problem arising in population dynamics. We obtain the Morse critical groups at zero. The results show that the energy functional of the problem is trivial. As a consequence, the existence and bifurcation of the nontrivial solutions to the problem are established. | en_US |
dc.identifier.doi | 10.1007/s10483-010-0212-6 | |
dc.identifier.endpage | 254 | en_US |
dc.identifier.issn | 0253-4827 | |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopus | 2-s2.0-77950650672 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 247 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s10483-010-0212-6 | |
dc.identifier.uri | https://hdl.handle.net/11468/14622 | |
dc.identifier.volume | 31 | en_US |
dc.identifier.wos | WOS:000274626800012 | |
dc.identifier.wosquality | Q3 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | en_US |
dc.publisher | Shanghai Univ | en_US |
dc.relation.ispartof | Applied Mathematics and Mechanics-English Edition | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | P-Laplacian | en_US |
dc.subject | Sign-Changing Weight Function | en_US |
dc.subject | Morse Critical Groups | en_US |
dc.title | Solutions to semilinear p-Laplacian Dirichlet problem in population dynamics | en_US |
dc.title | Solutions to semilinear p-Laplacian Dirichlet problem in population dynamics | |
dc.type | Article | en_US |