Forward selection-based ensemble of deep neural networks for melanoma classification in dermoscopy images
dc.contributor.author | Söylemez, Ömer Faruk | |
dc.contributor.orcid | 0000-0002-4076-5230 | |
dc.date.accessioned | 2024-04-24T15:59:25Z | |
dc.date.available | 2024-04-24T15:59:25Z | |
dc.date.issued | 2023 | |
dc.department | Dicle Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Ana Bilim Dalı | en_US |
dc.description.abstract | Melanoma is a rare skin cancer that constitutes only 1% of skin cancer cases. However, its ability to spread to other organs makes it deadliest among the four major cancer types. Early diagnosis of melanoma is essential, as it prevents cancer from spreading to other body parts, therefore significantly reducing mortality rates. In this study, we presented a forward selection-based ensembling strategy for deep neural networks to aid the diagnosis of melanoma in dermoscopy images. The proposed approach uses an ensemble of neural networks with varying input sizes to effectively capture size-related various properties of dermoscopy images. To this end, EfficientNet models B3-B7 are used with input resolutions of 256, 384, 512, and 768. Training and validation are carried out in a triple stratified cross-validation style with folds providing patient isolation, balance in the percentage of classes and balanced patient count distribution. Ensembles are formed by a modified form of forward selection algorithm. Experimental results show that the AUC for classification is increased by 2.01% using the proposed ensembling scheme. | en_US |
dc.identifier.citation | Söylemez, Ö. F. (2023). Forward selection-based ensemble of deep neural networks for melanoma classification in dermoscopy images. International Journal of Imaging Systems and Technology, 33(6), 1929-1943. | |
dc.identifier.doi | 10.1002/ima.22912 | |
dc.identifier.endpage | 1943 | en_US |
dc.identifier.issn | 0899-9457 | |
dc.identifier.issn | 1098-1098 | |
dc.identifier.issue | 6 | en_US |
dc.identifier.scopus | 2-s2.0-85159832957 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 1929 | en_US |
dc.identifier.uri | https://doi.org/10.1002/ima.22912 | |
dc.identifier.uri | https://hdl.handle.net/11468/14050 | |
dc.identifier.uri | https://onlinelibrary.wiley.com/doi/10.1002/ima.22912 | |
dc.identifier.volume | 33 | en_US |
dc.identifier.wos | WOS:000991855600001 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | Söylemez, Ömer Faruk | |
dc.language.iso | en | en_US |
dc.publisher | Wiley | en_US |
dc.relation.ispartof | International Journal of Imaging Systems and Technology | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Deep learning | en_US |
dc.subject | Ensembling | en_US |
dc.subject | Forward selection | en_US |
dc.subject | Melanoma | en_US |
dc.subject | Skin cancer | en_US |
dc.title | Forward selection-based ensemble of deep neural networks for melanoma classification in dermoscopy images | en_US |
dc.title | Forward selection-based ensemble of deep neural networks for melanoma classification in dermoscopy images | |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
[ X ]
- İsim:
- Forward selection-based ensemble of deep neural networks for melanoma classification in dermoscopy images.pdf
- Boyut:
- 3.51 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Makale Dosyası