Faber Polynomial Coefficient Estimates for Bi-univalent Functions Defined by the Tremblay Fractional Derivative Operator
dc.contributor.author | Srivastava, H. M. | |
dc.contributor.author | Sumer Eker, Sevtap | |
dc.contributor.author | Hamidi, S. G. | |
dc.contributor.author | Jahangiri, J. M. | |
dc.date.accessioned | 2024-04-24T16:10:40Z | |
dc.date.available | 2024-04-24T16:10:40Z | |
dc.date.issued | 2018 | |
dc.department | Dicle Üniversitesi | en_US |
dc.description.abstract | Using the Tremblay fractional derivative operator in the complex domain, we introduce and investigate a new class of analytic and bi-univalent functions in the open unit disk. We use the Faber polynomial expansions to obtain upper bounds for the general coefficients of such functions subject to a gap series condition as well as obtaining bounds for their first two coefficients. | en_US |
dc.identifier.doi | 10.1007/s41980-018-0011-3 | |
dc.identifier.endpage | 157 | en_US |
dc.identifier.issn | 1017-060X | |
dc.identifier.issn | 1735-8515 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85046486186 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 149 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s41980-018-0011-3 | |
dc.identifier.uri | https://hdl.handle.net/11468/15013 | |
dc.identifier.volume | 44 | en_US |
dc.identifier.wos | WOS:000431343600010 | |
dc.identifier.wosquality | Q4 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | en_US |
dc.publisher | Springer Singapore Pte Ltd | en_US |
dc.relation.ispartof | Bulletin of The Iranian Mathematical Society | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Tremblay Fractional Derivative Operator | en_US |
dc.subject | Faber Polynomials | en_US |
dc.subject | Analytic | en_US |
dc.subject | Univalent | en_US |
dc.subject | Bi-Univalent Functions | en_US |
dc.title | Faber Polynomial Coefficient Estimates for Bi-univalent Functions Defined by the Tremblay Fractional Derivative Operator | en_US |
dc.title | Faber Polynomial Coefficient Estimates for Bi-univalent Functions Defined by the Tremblay Fractional Derivative Operator | |
dc.type | Article | en_US |