The r-d class predictions in linear mixed models
dc.contributor.author | Kuran, Ozge | |
dc.date.accessioned | 2024-04-24T17:18:00Z | |
dc.date.available | 2024-04-24T17:18:00Z | |
dc.date.issued | 2021 | |
dc.department | Dicle Üniversitesi | en_US |
dc.description.abstract | In this paper, we propose the r-d class predictors which are general predictors of the best linear unbiased predictor (BLUP), the principal components regression (PCR) and the Liu predictors in the linear mixed models. Superiorities of the linear combination of the new predictors to each of these predictors are done in the sense of the mean square error matrix criterion. Finally, numerical examples and a simulation study are done to illustrate the findings. | en_US |
dc.identifier.doi | 10.1515/jiip-2019-0069 | |
dc.identifier.endpage | 498 | en_US |
dc.identifier.issn | 0928-0219 | |
dc.identifier.issn | 1569-3945 | |
dc.identifier.issue | 4 | en_US |
dc.identifier.scopus | 2-s2.0-85088385842 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 477 | en_US |
dc.identifier.uri | https://doi.org/10.1515/jiip-2019-0069 | |
dc.identifier.uri | https://hdl.handle.net/11468/18531 | |
dc.identifier.volume | 29 | en_US |
dc.identifier.wos | WOS:000704190800001 | |
dc.identifier.wosquality | Q1 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | en_US |
dc.publisher | Walter De Gruyter Gmbh | en_US |
dc.relation.ispartof | Journal of Inverse and Ill-Posed Problems | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Multicollinearity | en_US |
dc.subject | Best Linear Unbiased Predictor | en_US |
dc.subject | Principal Components Regression Predictor | en_US |
dc.subject | Liu Predictor | en_US |
dc.subject | R-D Class Predictor | en_US |
dc.title | The r-d class predictions in linear mixed models | en_US |
dc.title | The r-d class predictions in linear mixed models | |
dc.type | Article | en_US |