Kernel ridge prediction method in partially linear mixed measurement error model
dc.authorid | 0000-0001-5632-001X | en_US |
dc.authorid | 0000-0001-7283-9225 | en_US |
dc.contributor.author | Kuran, Özge | |
dc.contributor.author | Yalaz, Seçil | |
dc.date.accessioned | 2023-04-07T10:52:27Z | |
dc.date.available | 2023-04-07T10:52:27Z | |
dc.date.issued | 2022 | en_US |
dc.department | Dicle Üniversitesi, Fen Fakültesi, İstatistik Bölümü | en_US |
dc.description.abstract | In this article, a new kernel prediction method by using ridge regression approach is suggested to combat multicollinearity and the impacts of its existence on various views of partially linear mixed measurement error model. We derive the necessary and sufficient condition for the superiority of the linear combinations of the predictors in the sense of the matrix mean square error criterion and give the selection of the ridge biasing parameter. The asymptotic normality condition is investigated and the unknown covariance matrix of measurement errors circumstance is handled. A real data analysis together with a Monte Carlo simulation study is made to assess endorsement of the kernel ridge prediction method. | en_US |
dc.identifier.citation | Kuran, Ö. ve Yalaz, S. (2022). Kernel ridge prediction method in partially linear mixed measurement error model. Communications in Statistics - Simulation and Computation, Early Access | en_US |
dc.identifier.doi | 10.1080/03610918.2022.2075389 | |
dc.identifier.endpage | 21 | en_US |
dc.identifier.issn | 0361-0918 | |
dc.identifier.issn | 1532-4141 | |
dc.identifier.scopus | 2-s2.0-85130505728 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 1 | en_US |
dc.identifier.uri | https://www.tandfonline.com/doi/full/10.1080/03610918.2022.2075389 | |
dc.identifier.uri | https://hdl.handle.net/11468/11641 | |
dc.identifier.volume | Early Access | en_US |
dc.identifier.wos | WOS:000795724400001 | |
dc.identifier.wosquality | Q4 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | Kuran, Özge | |
dc.institutionauthor | Yalaz, Seçil | |
dc.language.iso | en | en_US |
dc.publisher | Taylor & Francis | en_US |
dc.relation.ispartof | Communications in Statistics - Simulation and Computation | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/embargoedAccess | en_US |
dc.subject | Asymptotic normality | en_US |
dc.subject | Kernel ridge prediction | en_US |
dc.subject | Measurement error | en_US |
dc.subject | Multicollinearity | en_US |
dc.subject | Partially linear mixed model | en_US |
dc.title | Kernel ridge prediction method in partially linear mixed measurement error model | en_US |
dc.title | Kernel ridge prediction method in partially linear mixed measurement error model | |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
[ X ]
- İsim:
- Kernel ridge prediction method in partially linear mixed measurement error model.pdf
- Boyut:
- 2.29 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Makale Dosyası
Lisans paketi
1 - 1 / 1
[ X ]
- İsim:
- license.txt
- Boyut:
- 1.44 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: