Existence of solutions for p(x)-Laplacian equations

dc.contributor.authorMashiyev, R. A.
dc.contributor.authorCekic, B.
dc.contributor.authorBuhrii, O. M.
dc.date.accessioned2024-04-24T17:33:55Z
dc.date.available2024-04-24T17:33:55Z
dc.date.issued2010
dc.departmentDicle Üniversitesien_US
dc.description.abstractWe discuss the problem {-div (vertical bar Delta(u)vertical bar(p(x)-2)del(u))=lambda(a(x)vertical bar u vertical bar(q(x)-2) u + b(x)vertical bar u vertical bar(h(x)-2)u), for x is an element of Omega, u=0, for x is an element of partial derivative Omega. where Omega is a bounded domain with smooth boundary in R-N (N >= 2) and p is Lipschitz continuous, q and h are continuous functions on (Omega) over bar such that 1 < q(x) < p(x) < h(x) < p*(x) and p(x) < N. We show the existence of at least one nontrivial weak solution. Our approach relies on the variable exponent theory of Lebesgue and Sobolev spaces combined with adequate variational methods and the Mountain Pass Theorem.en_US
dc.description.sponsorshipDUBAP, Dicle University, Turkey [10-FF-15]en_US
dc.description.sponsorshipThis research was supported by DUBAP grant No. 10-FF-15, Dicle University, Turkey.en_US
dc.identifier.endpage13en_US
dc.identifier.issn1417-3875
dc.identifier.issue65en_US
dc.identifier.scopus2-s2.0-78649405830
dc.identifier.scopusqualityQ3
dc.identifier.startpage1en_US
dc.identifier.urihttps://hdl.handle.net/11468/20889
dc.identifier.wosWOS:000284099600001
dc.identifier.wosqualityQ4
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoenen_US
dc.publisherUniv Szeged, Bolyai Instituteen_US
dc.relation.ispartofElectronic Journal of Qualitative Theory of Differential Equations
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectVariable Exponent Lebesgue And Sobolev Spacesen_US
dc.subjectP(X)-Laplacianen_US
dc.subjectVariational Methodsen_US
dc.subjectMountain Pass Theoremen_US
dc.titleExistence of solutions for p(x)-Laplacian equationsen_US
dc.titleExistence of solutions for p(x)-Laplacian equations
dc.typeArticleen_US

Dosyalar