Existence of solutions for p(x)-Laplacian equations
dc.contributor.author | Mashiyev, R. A. | |
dc.contributor.author | Cekic, B. | |
dc.contributor.author | Buhrii, O. M. | |
dc.date.accessioned | 2024-04-24T17:33:55Z | |
dc.date.available | 2024-04-24T17:33:55Z | |
dc.date.issued | 2010 | |
dc.department | Dicle Üniversitesi | en_US |
dc.description.abstract | We discuss the problem {-div (vertical bar Delta(u)vertical bar(p(x)-2)del(u))=lambda(a(x)vertical bar u vertical bar(q(x)-2) u + b(x)vertical bar u vertical bar(h(x)-2)u), for x is an element of Omega, u=0, for x is an element of partial derivative Omega. where Omega is a bounded domain with smooth boundary in R-N (N >= 2) and p is Lipschitz continuous, q and h are continuous functions on (Omega) over bar such that 1 < q(x) < p(x) < h(x) < p*(x) and p(x) < N. We show the existence of at least one nontrivial weak solution. Our approach relies on the variable exponent theory of Lebesgue and Sobolev spaces combined with adequate variational methods and the Mountain Pass Theorem. | en_US |
dc.description.sponsorship | DUBAP, Dicle University, Turkey [10-FF-15] | en_US |
dc.description.sponsorship | This research was supported by DUBAP grant No. 10-FF-15, Dicle University, Turkey. | en_US |
dc.identifier.endpage | 13 | en_US |
dc.identifier.issn | 1417-3875 | |
dc.identifier.issue | 65 | en_US |
dc.identifier.scopus | 2-s2.0-78649405830 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 1 | en_US |
dc.identifier.uri | https://hdl.handle.net/11468/20889 | |
dc.identifier.wos | WOS:000284099600001 | |
dc.identifier.wosquality | Q4 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | en_US |
dc.publisher | Univ Szeged, Bolyai Institute | en_US |
dc.relation.ispartof | Electronic Journal of Qualitative Theory of Differential Equations | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Variable Exponent Lebesgue And Sobolev Spaces | en_US |
dc.subject | P(X)-Laplacian | en_US |
dc.subject | Variational Methods | en_US |
dc.subject | Mountain Pass Theorem | en_US |
dc.title | Existence of solutions for p(x)-Laplacian equations | en_US |
dc.title | Existence of solutions for p(x)-Laplacian equations | |
dc.type | Article | en_US |