A local radial basis function-finite difference (RBF-FD) method for solving 1D and 2D coupled Schrödinger-Boussinesq (SBq) equations

dc.authorid0000-0002-6655-3543en_US
dc.contributor.authorOruç, Ömer
dc.date.accessioned2021-06-10T08:26:17Z
dc.date.available2021-06-10T08:26:17Z
dc.date.issued2021en_US
dc.departmentDicle Üniversitesi, Fen Fakültesi, Matematik Bölümüen_US
dc.descriptionWOS:000656660200004
dc.description.abstractIn this study, one-dimensional (1D) and two-dimensional (2D) coupled Schrodinger-Boussinesq (SBq) equations are examined numerically. A local meshless method based on radial basis function-finite difference (RBF-FD) method for spatial approximation is devised. We use polyharmonic splines as radial basis function along with augmented polynomials. By using polyharmonic splines we avoid to choose optimal shape parameter which requires special algorithms in meshless methods. For temporal discretization, low-storage ten-stage fourth-order explicit strong stability preserving Runge Kutta method is used which gives more flexibility on temporal step width. L-infinity and L-2 error norms are calculated to show accuracy of the proposed method. Further, conserved quantities are monitoried during numerical simulations to see how good the proposed method preserves them. Stability of the proposed method is dicussed numerically. Some codes are developed in Julia programming language to achieve more speed up in numerical simulations. Obtained results and their comparison with some studies such as wavelet, difference schemes and Fourier spectral methods available in literature verify the efficiency and reliability of the proposed method.en_US
dc.identifier.citationOruç, Ö. (2021). A local radial basis function-finite difference (RBF-FD) method for solving 1D and 2D coupled Schrödinger-Boussinesq (SBq) equations. Engineering Analysis with Boundary Elements, 129, 55-66.en_US
dc.identifier.doi10.1016/j.enganabound.2021.04.019
dc.identifier.endpage66en_US
dc.identifier.issn0955-7997
dc.identifier.issn1873-197X
dc.identifier.scopus2-s2.0-85105305639
dc.identifier.scopusqualityQ1
dc.identifier.startpage55en_US
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0955799721001041?via%3Dihub
dc.identifier.urihttps://hdl.handle.net/11468/7078
dc.identifier.volume129en_US
dc.identifier.wosWOS:000656660200004
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorOruç, Ömer
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofEngineering Analysis with Boundary Elements
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCoupled Schrödinger-Boussinesq (SBq) equationsen_US
dc.subjectLocal meshless methoden_US
dc.subjectFinite differenceen_US
dc.subjectNonlinearityen_US
dc.subjectTwo-dimensionen_US
dc.titleA local radial basis function-finite difference (RBF-FD) method for solving 1D and 2D coupled Schrödinger-Boussinesq (SBq) equationsen_US
dc.titleA local radial basis function-finite difference (RBF-FD) method for solving 1D and 2D coupled Schrödinger-Boussinesq (SBq) equations
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
A local radial basis function-finite difference (RBF-FD) method for solving 1D and 2D coupled Schrödinger-Boussinesq (SBq) equations.pdf
Boyut:
2.37 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Makale Dosyası
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: