A classification approach for focal/non-focal EEG detection using cepstral analysis
dc.authorid | 0000-0002-9368-8902 | en_US |
dc.authorid | 0000-0002-6863-7150 | en_US |
dc.contributor.author | Şeker, Delal | |
dc.contributor.author | Özerdem, Mehmet Siraç | |
dc.date.accessioned | 2022-01-28T12:55:03Z | |
dc.date.available | 2022-01-28T12:55:03Z | |
dc.date.issued | 2021 | en_US |
dc.department | Dicle Üniversitesi, Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü | en_US |
dc.description.abstract | Electroencephalogram (EEG) is a convenient neuroimaging technique due to its non-invasive setup, practical usage, and high temporal resolution. EEG allows to detect brain electrical activity to diagnose neurological disorders. Epilepsy is a crucial neurologic disorder that is reasoned from occurrence of sudden and repeated seizures. The goal of this paper is to classify the focal (epileptogenic area) and non-focal (non-epileptogenic area) EEG records with cepstral coefficients and machine learning algorithms. Analysis is carried out using publicly available Bern-Barcelona EEG dataset. Mel Frequency Cepstral Coefficients (MFCC) are calculated from EEG epochs. Feature sets are normalized with z-score and dimension reduction is realized using Principal Component Analysis. Fine Tree, Quadratic Discriminant Analysis, Logistic Regression, Gaussian Naïve Bayes, Cubic Support Vector Machine, weighted k-nearest neighbors, and Bagged Trees are applied for classification stage. A value of k=10 is used for cross validation. All focal and non-focal EEG pairs are perfectly classified with acc., sen., spe., and F1-score of 100% and AUC with 1 via. Quadratic Discriminant Analysis, Logistic Regression, Cubic SVM and Weighted k-NN. Proposed work recommends MFCCs as a single marker and this provides less computation workload, practicality, and direct processing of focal / non-focal EEG time series. Proposed methodology in this paper serves one of the highest achievements to literature and can assist neurologist and physicians to validate their diagnosis. | en_US |
dc.identifier.citation | Şeker, D. ve Özerdem, M. S. (2021). A classification approach for focal/non-focal EEG detection using cepstral analysis. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 12(4), 603-613. | en_US |
dc.identifier.doi | 10.24012/dumf.1002081 | |
dc.identifier.endpage | 613 | en_US |
dc.identifier.issn | 1309-8640 | |
dc.identifier.issn | 2146-4391 | |
dc.identifier.issue | 4 | en_US |
dc.identifier.startpage | 603 | en_US |
dc.identifier.trdizinid | 482600 | |
dc.identifier.uri | https://dergipark.org.tr/tr/download/article-file/1999734 | |
dc.identifier.uri | https://hdl.handle.net/11468/9115 | |
dc.identifier.uri | https://search.trdizin.gov.tr/yayin/detay/482600 | |
dc.identifier.volume | 12 | en_US |
dc.indekslendigikaynak | TR-Dizin | |
dc.institutionauthor | Şeker, Delal | |
dc.institutionauthor | Özerdem, Mehmet Siraç | |
dc.language.iso | en | en_US |
dc.publisher | Dicle Üniversitesi Mühendislik Fakültesi | en_US |
dc.relation.ispartof | Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi | |
dc.relation.publicationcategory | Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Cepstrum analysis | en_US |
dc.subject | Classification | en_US |
dc.subject | EEG | en_US |
dc.subject | Focal and | en_US |
dc.subject | Non- focal | en_US |
dc.title | A classification approach for focal/non-focal EEG detection using cepstral analysis | en_US |
dc.title | A classification approach for focal/non-focal EEG detection using cepstral analysis | |
dc.type | Article | en_US |