Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Vlahopoulos, Spiros" seçeneğine göre listele

Listeleniyor 1 - 6 / 6
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Aldehyde dehydrogenase genes as prospective actionable targets in acute myeloid leukemia
    (MDPI, 2023) Dancik, Garrett M.; Varışli, Lokman; Tolan, Veysel; Vlahopoulos, Spiros
    It has been previously shown that the aldehyde dehydrogenase (ALDH) family member ALDH1A1 has a significant association with acute myeloid leukemia (AML) patient risk group classification and that AML cells lacking ALDH1A1 expression can be readily killed via chemotherapy. In the past, however, a redundancy between the activities of subgroup members of the ALDH family has hampered the search for conclusive evidence to address the role of specific ALDH genes. Here, we describe the bioinformatics evaluation of all nineteen member genes of the ALDH family as prospective actionable targets for the development of methods aimed to improve AML treatment. We implicate ALDH1A1 in the development of recurrent AML, and we show that from the nineteen members of the ALDH family, ALDH1A1 and ALDH2 have the strongest association with AML patient risk group classification. Furthermore, we discover that the sum of the expression values for RNA from the genes, ALDH1A1 and ALDH2, has a stronger association with AML patient risk group classification and survival than either one gene alone does. In conclusion, we identify ALDH1A1 and ALDH2 as prospective actionable targets for the treatment of AML in high-risk patients. Substances that inhibit both enzymatic activities constitute potentially effective pharmaceutics.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Critical roles of SRC-3 in the development and progression of breast cancer, rendering it a prospective clinical target
    (MDPI, 31.10.2023) Varışli, Lokman; Dancik, Garrett M.; Tolan, Veysel; Vlahopoulos, Spiros
    Breast cancer (BCa) is the most frequently diagnosed malignant tumor in women and is also one of the leading causes of cancer-related death. Most breast tumors are hormone-dependent and estrogen signaling plays a critical role in promoting the survival and malignant behaviors of these cells. Estrogen signaling involves ligand-activated cytoplasmic estrogen receptors that translocate to the nucleus with various co-regulators, such as steroid receptor co-activator (SRC) family members, and bind to the promoters of target genes and regulate their expression. SRC-3 is a member of this family that interacts with, and enhances, the transcriptional activity of the ligand activated estrogen receptor. Although SRC-3 has important roles in normal homeostasis and developmental processes, it has been shown to be amplified and overexpressed in breast cancer and to promote malignancy. The malignancy-promoting potential of SRC-3 is diverse and involves both promoting malignant behavior of tumor cells and creating a tumor microenvironment that has an immunosuppressive phenotype. SRC-3 also inhibits the recruitment of tumor-infiltrating lymphocytes with effector function and promotes stemness. Furthermore, SRC-3 is also involved in the development of resistance to hormone therapy and immunotherapy during breast cancer treatment. The versatility of SRC-3 in promoting breast cancer malignancy in this way makes it a good target, and methodical targeting of SRC-3 probably will be important for the success of breast cancer treatment.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Dissecting pharmacological effects of chloroquine in cancer treatment: interference with inflammatory signaling pathways
    (IMMUA, 2020) Varisli, Lokman; Cen, Osman; Vlahopoulos, Spiros
    Chloroquines are 4-aminoquinoline-based drugs mainly used to treat malaria. At pharmacological concentrations, they have significant effects on tissue homeostasis, targeting diverse signaling pathways in mammalian cells. A key target pathway is autophagy, which regulates macromolecule turnover in the cell. In addition to affecting cellular metabolism and bioenergetic flow equilibrium, autophagy plays a pivotal role at the interface between inflammation and cancer progression. Chloroquines consequently have critical effects in tissue metabolic activity and importantly, in key functions of the immune system. In this article, we will review the work addressing the role of chloroquines in the homeostasis of mammalian tissue, and the potential strengths and weaknesses concerning their use in cancer therapy.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Editorial: Acute leukemias: molecular characterization, leukemia-initiating cells, and influence of the microenvironment
    (Frontiers, 2023) Dancik, Garrett M.; Varışli, Lokman; Voutsas, Ioannis F.; Vlahopoulos, Spiros
    Acute leukemias remain a challenge, in spite of improvements in diagnosis and treatment. Fully establishing the depth and extent of the relative impact of the molecular mechanisms of disease progression and the pathways to recurrent disease will require decades of research, until our comprehension enables the routine development of simple and effective cures. This special issue was aimed to address progress in the characterization of the molecular basis of acute leukemias and to explore potential links with disease course.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Epithelial–mesenchymal transition in acute leukemias
    (MDPI, 2024) Varışli, Lokman; Vlahopoulos, Spiros
    Epithelial–mesenchymal transition (EMT) is a metabolic process that confers phenotypic flexibility to cells and the ability to adapt to new functions. This transition is critical during embryogenesis and is required for the differentiation of many tissues and organs. EMT can also be induced in advanced-stage cancers, leading to further malignant behavior and chemotherapy resistance, resulting in an unfavorable prognosis for patients. Although EMT was long considered and studied only in solid tumors, it has been shown to be involved in the pathogenesis of hematological malignancies, including acute leukemias. Indeed, there is increasing evidence that EMT promotes the progression of acute leukemias, leading to the emergence of a more aggressive phenotype of the disease, and also causes chemotherapy resistance. The current literature suggests that the levels and activities of EMT inducers and markers can be used to predict prognosis, and that targeting EMT in addition to conventional therapies may increase treatment success in acute leukemias.
  • Yükleniyor...
    Küçük Resim
    Öğe
    OGG1 as an epigenetic reader affects NF?B: What this means for cancer
    (MDPI, 2024) Vlahopoulos, Spiros; Pan, Lang; Varışli, Lokman; Dancik, Garrett M.; Karantanos, Theodoros; Boldogh, Istvan
    8-oxoguanine glycosylase 1 (OGG1), which was initially identified as the enzyme that catalyzes the first step in the DNA base excision repair pathway, is now also recognized as a modulator of gene expression. What is important for cancer is that OGG1 acts as a modulator of NFκB-driven gene expression. Specifically, oxidant stress in the cell transiently halts enzymatic activity of substrate-bound OGG1. The stalled OGG1 facilitates DNA binding of transactivators, such as NFκB to their cognate sites, enabling the expression of cytokines and chemokines, with ensuing recruitment of inflammatory cells. Recently, we highlighted chief aspects of OGG1 involvement in regulation of gene expression, which hold significance in lung cancer development. However, OGG1 has also been implicated in the molecular underpinning of acute myeloid leukemia. This review analyzes and discusses how these cells adapt through redox-modulated intricate connections, via interaction of OGG1 with NFκB, which provides malignant cells with alternative molecular pathways to transform their microenvironment, enabling adjustment, promoting cell proliferation, metastasis, and evading killing by therapeutic agents.

| Dicle Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Dicle Üniversitesi, Diyarbakır, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim