BLOW UP OF SOLUTIONS FOR VISCOELASTIC WAVE EQUATIONS OF KIRCHHOFF TYPE WITH ARBITRARY POSITIVE INITIAL ENERGY
[ X ]
Tarih
2017
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Texas State Univ
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In this article we consider the nonlinear Viscoelastic wave equations of Kirchh off type u(tt) - M(parallel to del u parallel to(2))Delta u + integral(t)(0) g(1)(t - tau)Delta u(tau)d tau + u(t) = (p + 1)vertical bar v vertical bar(q+1)vertical bar u vertical bar(p-1) u, u(tt) - M(parallel to del v parallel to(2))Delta v + integral(t)(0) g(2)(t - tau)Delta v(tau)d tau + v(t) = (q + 1)vertical bar u vertical bar(p+1)vertical bar v vertical bar(q-1) v, with initial conditions and Dirichlet boundary conditions. We proved the global nonexistence of solutions by applying a lemma by Levine, and the concavity method.
Açıklama
Anahtar Kelimeler
Blow Up, Viscoelastic Wave Equation, Arbitrary Positive Initial Energy
Kaynak
Electronic Journal of Differential Equations
WoS Q Değeri
Q2