Estimation of epileptic seizure by using Lyapunov exponent, wavelet entropy and artificial neural networks

dc.contributor.authorAcar, Hüseyin
dc.contributor.authorBayram, Muhittin
dc.date.accessioned2024-04-24T17:56:27Z
dc.date.available2024-04-24T17:56:27Z
dc.date.issued2012
dc.departmentDicle Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümüen_US
dc.description2012 20th Signal Processing and Communications Applications Conference, SIU 2012 -- 18 April 2012 through 20 April 2012 -- Fethiye, Mugla-- 90786en_US
dc.description.abstractBrain signals are widely used for diagnosing epilepsy disease. The objective of this study is to design an automated system for differentiating epileptic EEG signals from non epileptic ones. The EEG signals used in the study comprise both healthy and epileptic signals which have been taken from patients during seizure. The signals were analyzed in phase space by means of Lyapunov exponent and wavelet entropy. Some features were identified from this phase space data and automatically classified by an adapted.en_US
dc.identifier.citationAcar, H. ve Bayram, M. (2012). Epileptik nöbetin Lyapunov üsteli̇, dalgacık entropi ve yapay sinir ağları ile kestirimi. 2012 20th Signal Processing and Communications Applications Conference, SIU 2012, Proceedings.
dc.identifier.doi10.1109/SIU.2012.6204614
dc.identifier.isbn9781467300568
dc.identifier.scopus2-s2.0-84863478221en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://doi.org/10.1109/SIU.2012.6204614
dc.identifier.urihttps://hdl.handle.net/11468/23519
dc.indekslendigikaynakScopusen_US
dc.language.isotren_US
dc.relation.ispartof2012 20th Signal Processing and Communications Applications Conference, SIU 2012, Proceedingsen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAnnen_US
dc.subjectEegen_US
dc.subjectEpilepsyen_US
dc.subjectLyapunov exponenten_US
dc.subjectWavelet entropyen_US
dc.titleEstimation of epileptic seizure by using Lyapunov exponent, wavelet entropy and artificial neural networksen_US
dc.title.alternativeEpileptik nöbetin Lyapunov üsteli̇, dalgacık entropi ve yapay sinir ağları ile kestirimien_US
dc.typeConference Objecten_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
Using bispectral analysis in OSAS estimation.pdf
Boyut:
156.13 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Konferans Öğesi