EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR DIRICHLET PROBLEMS INVOLVING THE P(X)-LAPLACE OPERATOR

dc.contributor.authorAvci, Mustafa
dc.date.accessioned2024-04-24T17:44:21Z
dc.date.available2024-04-24T17:44:21Z
dc.date.issued2013
dc.departmentDicle Üniversitesien_US
dc.description.abstractIn this article, we study superlinear Dirichlet problems involving the p(x)-Laplace operator without using the Ambrosetti-Rabinowitz's superquadraticity condition. Using a variant Fountain theorem, but not including Palais-Smale type assumptions, we prove the existence and multiplicity of the solutions.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://hdl.handle.net/11468/21951
dc.identifier.wosWOS:000320311000004
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.language.isoenen_US
dc.publisherTexas State Univen_US
dc.relation.ispartofElectronic Journal of Differential Equations
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectP(X)-Laplace Operatoren_US
dc.subjectVariable Exponent Lebesgue-Sobolev Spacesen_US
dc.subjectVariational Approachen_US
dc.subjectFountain Theoremen_US
dc.titleEXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR DIRICHLET PROBLEMS INVOLVING THE P(X)-LAPLACE OPERATORen_US
dc.titleEXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR DIRICHLET PROBLEMS INVOLVING THE P(X)-LAPLACE OPERATOR
dc.typeArticleen_US

Dosyalar