Yerel ikili örüntü yöntemi kullanarak EEG kayıtlarından mental aktivite tespiti

dc.contributor.authorTürk, Ömer
dc.contributor.authorÖzerdem, Mehmet Siraç
dc.date.accessioned2024-04-24T17:56:26Z
dc.date.available2024-04-24T17:56:26Z
dc.date.issued2017
dc.departmentDicle Üniversitesi, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümüen_US
dc.description2017 International Artificial Intelligence and Data Processing Symposium, IDAP 2017 -- 16 September 2017 through 17 September 2017 -- -- 115012en_US
dc.description.abstractElectroencephalogram signals are widely used in the detection of different activities but not in the desired level. In this study with this motivation, it is aimed to obtain the attributes by using the Local Bilinear Pattern (LBP) method of EEG records for various mental activities and to classify these features by k-Nearest Neighbor (k-NN) method. The binary classification performance of these EEG records containing 5 mental tasks was evaluated. In addition, in order to evaluate classification performance, confusion matrix was used as model performance criterion. In the study, the average of the classification performance of all participants was found as 87.38%. As a model performance criterion from the participants' classification of mental activity, accuracy was 85.03%, precision was 85.40% and sensitivity was 85.47%. So, as a result the obtained results support the literature and the applicability of the LBP method for EEG markings has been confirmed.en_US
dc.identifier.citationTürk, Ö. ve Özerdem, M. S. (2017). Yerel ikili örüntü yöntemi kullanarak EEG kayıtlarından mental aktivite tespiti. IDAP 2017 - International Artificial Intelligence and Data Processing Symposium.
dc.identifier.doi10.1109/IDAP.2017.8090271
dc.identifier.isbn9781538618806
dc.identifier.scopus2-s2.0-85039907242en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://doi.org/10.1109/IDAP.2017.8090271
dc.identifier.urihttps://hdl.handle.net/11468/23508
dc.indekslendigikaynakScopusen_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofIDAP 2017 - International Artificial Intelligence and Data Processing Symposiumen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectK-Nnen_US
dc.subjectLocal binary patternen_US
dc.subjectMental activitiesen_US
dc.titleYerel ikili örüntü yöntemi kullanarak EEG kayıtlarından mental aktivite tespitien_US
dc.title.alternativeMental activity detection from EEG records using local binary pattern methoden_US
dc.typeConference Objecten_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
Mental activity detection from EEG records using local binary pattern method.pdf
Boyut:
338.68 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Konferans Öğesi