Differential invariants for hyperbolic systems
dc.contributor.author | Yilmaz H. | |
dc.date.accessioned | 2024-04-24T18:45:55Z | |
dc.date.available | 2024-04-24T18:45:55Z | |
dc.date.issued | 2011 | |
dc.department | Dicle Üniversitesi | en_US |
dc.description.abstract | We show that Z3 x R4 Toda Lattice Equations can be obtained from the LaplaceDarboux transformations of invariants for a four-dimensional hyperbolic system. We also present the relationship between the invariants of L and the invariants of M when [L, M] = 0, where L and M are n × n operator matrices.© Dynamic Publishers, Inc. | en_US |
dc.identifier.endpage | 372 | en_US |
dc.identifier.issn | 1083-2564 | |
dc.identifier.issue | 2-4 | en_US |
dc.identifier.scopus | 2-s2.0-80155188672 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 363 | en_US |
dc.identifier.uri | https://hdl.handle.net/11468/24964 | |
dc.identifier.volume | 15 | en_US |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | en_US |
dc.relation.ispartof | Communications in Applied Analysis | |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.title | Differential invariants for hyperbolic systems | en_US |
dc.title | Differential invariants for hyperbolic systems | |
dc.type | Conference Object | en_US |