Differential invariants for hyperbolic systems

dc.contributor.authorYilmaz H.
dc.date.accessioned2024-04-24T18:45:55Z
dc.date.available2024-04-24T18:45:55Z
dc.date.issued2011
dc.departmentDicle Üniversitesien_US
dc.description.abstractWe show that Z3 x R4 Toda Lattice Equations can be obtained from the LaplaceDarboux transformations of invariants for a four-dimensional hyperbolic system. We also present the relationship between the invariants of L and the invariants of M when [L, M] = 0, where L and M are n × n operator matrices.© Dynamic Publishers, Inc.en_US
dc.identifier.endpage372en_US
dc.identifier.issn1083-2564
dc.identifier.issue2-4en_US
dc.identifier.scopus2-s2.0-80155188672
dc.identifier.scopusqualityN/A
dc.identifier.startpage363en_US
dc.identifier.urihttps://hdl.handle.net/11468/24964
dc.identifier.volume15en_US
dc.indekslendigikaynakScopus
dc.language.isoenen_US
dc.relation.ispartofCommunications in Applied Analysis
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleDifferential invariants for hyperbolic systemsen_US
dc.titleDifferential invariants for hyperbolic systems
dc.typeConference Objecten_US

Dosyalar