Logaritmik kaynak terimli dalga denklemlerin çözümlerinin davranışı

dc.authorid0000-0002-9130-2893en_US
dc.contributor.advisorPişkin, Erhan
dc.contributor.authorIrkıl, Nazlı
dc.date.accessioned2021-08-24T12:59:46Z
dc.date.available2021-08-24T12:59:46Z
dc.date.issued2021en_US
dc.date.submitted2021
dc.departmentDicle Üniversitesi, Fen Bilimleri Enstitüsü, Matematik Ana Bilim Dalıen_US
dc.description.abstractBu tezin ilk bölümünde hiperbolik tipten evolüsyon denklemlerin tarihsel gelişimi ile ilgili bilgiler verilmiştir. Ayrıca bu denklemlerin günlük hayatta ve fizikte kullanım alanları ele alınmıştır. İkinci bölümde, logaritmik kaynak terime sahip problemlerle ile ilgili günümüze kadar yapılan çalışmalar ele alınmıştır. Üçüncü bölümde tez boyunca gerekli olan temel tanım, teorem, eşitsizlikler, yöntemler ve denklem modellemeleri verilmiştir. Dördüncü bölüm ise üç kısımdan oluşmuştur. İlk kısımda doğrusal olmayan logaritmik kaynak terim içeren Boussinesq denklem çözümlerinin global varlığı, sonsuz zamanda patlaması ve azalması elde edilmiştir. İkinci kısımda ise logaritmik kaynak terime sahip hiperbolik tipten p- Laplasyan denklem çözümlerinin global varlığı, üstel büyümesi ve azalması elde edilmiştir. Üçüncü kısımda ise logaritmik kaynak terime sahip yüksek mertebeden Kirchhoff denklem sistemi ele alınarak sistemin çözümlerinin global varlığı ve azalması çalışılmıştır.
dc.description.abstractIn the first chapter of this dissertation, according to available literature,the information about the history of hyperbolic type evolution equations were given. Also, the applications of this type problem in daily life and physics were discussed. In the second chapter, the results of several studies related to hyperbolic type equations with logarithmic source term were analyzed. In the third chapter, the basic definition, theorem, inequalities, methods and equation modeling which will be used in this dissertation were given. The fourth chapter consists of three subsections. In the first subsection of the fourth chapter, the global existence, blow up at infinity and decay results of the solutions for the Boussinesq equation with the nonlinear logarithmic source term were obtained. In the second subsection, global existence, exponential growth and decay of solutions for the p-Laplacian equation with logarithmic source term were obtained. In the third subsection, the decay and global existence of the solutions for higher order Kirchhoff system with logarithmic source term were studied.
dc.identifier.citationIrkıl, N. (2021). Logaritmik kaynak terimli dalga denklemlerin çözümlerinin davranışı. Yayımlanmamış doktora tezi, Dicle Üniversitesi, Diyarbakır.en_US
dc.identifier.urihttps://hdl.handle.net/11468/7374
dc.language.isotren_US
dc.publisherDicle Üniversitesi, Fen Bilimleri Enstitüsüen_US
dc.relation.publicationcategoryTezen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectLogaritmik kaynak terimen_US
dc.subjectBoussinesq denklemien_US
dc.subjectp-Laplasyan denklemien_US
dc.subjectYüksek mertebe Kirchhoff sistemien_US
dc.subjectGlobal varlıken_US
dc.subjectPatlamaen_US
dc.subjectEnerji azalmasıen_US
dc.subjectÜstel büyümeen_US
dc.subjectLogarithmic source termen_US
dc.subjectBoussinesq equationen_US
dc.subjectp-Laplacian equationen_US
dc.subjectHigher- order Kirchoff systemen_US
dc.subjectGlobal existenceen_US
dc.subjectBlow upen_US
dc.subjectDecayen_US
dc.subjectExponential growthen_US
dc.titleLogaritmik kaynak terimli dalga denklemlerin çözümlerinin davranışıen_US
dc.title.alternativeBehavior of solutions of wave equations with logarithmic source termen_US
dc.typeDoctoral Thesisen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
10409930.PDF.pdf
Boyut:
1.16 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tez Dosyası
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: