Detection of Driver Dynamics with VGG16 Model

dc.contributor.authorAytekin, Alper
dc.contributor.authorMencik, Vasfiye
dc.date.accessioned2024-04-24T17:20:20Z
dc.date.available2024-04-24T17:20:20Z
dc.date.issued2022
dc.departmentDicle Üniversitesien_US
dc.description.abstractOne of the most important factors triggering the occurrence of traffic accidents is that drivers continue to drive in a tired and drowsy state. It is a great opportunity to regularly control the dynamics of the driver with transfer learning methods while driving, and to warn the driver in case of possible drowsiness and to focus their attention in order to prevent traffic accidents due to drowsiness. A classification study was carried out with the aim of detecting the drowsiness of the driver by the position of the eyelids and the presence of yawning movement using the Convolutional Neural Network (CNN) architecture. The dataset used in the study includes the face shapes of drivers of different genders and different ages while driving. Accuracy and F1-score parameters were used for experimental studies. The results achieved are 91 % accuracy for the VGG16 model and an F1-score of over 90 % for each class.en_US
dc.identifier.doi10.2478/acss-2022-0009
dc.identifier.endpage88en_US
dc.identifier.issn2255-8683
dc.identifier.issn2255-8691
dc.identifier.issue1en_US
dc.identifier.startpage83en_US
dc.identifier.urihttps://doi.org/10.2478/acss-2022-0009
dc.identifier.urihttps://hdl.handle.net/11468/18939
dc.identifier.volume27en_US
dc.identifier.wosWOS:000843700300009
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.language.isoenen_US
dc.publisherSciendoen_US
dc.relation.ispartofApplied Computer Systems
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDeep Learningen_US
dc.subjectDrowsinessen_US
dc.subjectTransfer Learningen_US
dc.subjectVgg16en_US
dc.titleDetection of Driver Dynamics with VGG16 Modelen_US
dc.titleDetection of Driver Dynamics with VGG16 Model
dc.typeArticleen_US

Dosyalar