Yazar "de Pomerai, David I." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe The toxicity of dithiocarbamate fungicides to soil nematodes, assessed using a stress-inducible transgenic strain of Caenorhabditis elegans(John Wiley and Sons Inc., 1999) Güven, Kemal; Power, Rowena S.; Avramides, Sophia; Allender, Rebecca; de Pomerai, David I.; 0000-0002-0181-3746The dithiocarbamate fungicides maneb and mancozeb induce a short-term stress response in a transgenic Caenorhabditis elegans strain (PC72) carrying a reporter lacZ gene under the control of a homologous heat shock (hsp16) promoter. This response can be readily monitored as induced beta-galactosidase activity, either by in situ staining or by a quantitative fluorometric enzyme assay. Particularly strong responses are induced by mancozeb (three- to fivefold above controls at 500 pg mL(-1)), causing acute toxicity at concentrations comparable to those recommended for field application (2 mg mL(-1)). Although much of this fungicide is adsorbed by soil, sufficient (ca. 6%) enters the soil water compartment to cause mild stress in the transgenic worm assay. Among possible metabolites from mancozeb breakdown, neither Mn2+ nor ethylenethiourea (ETU) is particularly toxic even at 10% of the optimum mancozeb dosage. Stress responses to a range of other pesticides are also reported, and in several cases it is clear that a nontarget soil species there, transgenic C. elegans) may be sensitive to low-level contamination. (C) 1999 John Wiley & Sons, Inc.Öğe Toxicity of the dithiocarbamate fungicide mancozeb to the nontarget soil nematode, Caenorhabditis elegans(Wiley, 2001) Easton, Anna; Güven, Kemal; de Pomerai, David I.; 0000-0002-0181-3746We have previously shown that the dithiocarbamate fungicide, Mancozeb, strongly induces lacZ reporter expression from an endogenous heat-shock promoter (hsp16) in the PC72 transgenic strain of the nematode Caenorhabditis elegans. Such evidence of organismal stress, in a nontarget species at subapplication concentrations, was much less apparent for the related fungicide, Maneb, which only weakly induced reporter expression. We now show that reporter induction by Mancozeb is marginal (<60%) after a few hours' exposure, but increases substantially (to almost 10-fold) after overnight exposure. In conjunction with our previous results using intermediate exposure periods, this suggests that the factor limiting reporter responses is likely to be a slow rate of uptake and/or metabolism of the fungicide. We confirm that a potentially toxic metabolite of dithiocarbamate fungicides, namely ethylenethiourea (ETU), has minimal toxicity toward C. elegans, even after prolonged exposure at high concentrations. We demonstrate that exposure to Mancozeb (but not ETU) significantly inhibits larval growth in C. elegans, although this parameter is not markedly more sensitive than reporter induction as a toxicological endpoint. Finally, we have used two-dimensional electrophoresis to show that high concentrations of both Maneb and Mancozeb drastically simplify the protein spot profile compared with controls. However, only in the latter case is there evidence of novel proteins being induced. Both fungicides appear toxic to C. elegans, but only Mancozeb induces a strong heat-shock response. (C) 2001 John Wiley & Sons, Inc.