Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Ateş, Ali Kemal" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Design of an electrochemical sensing platform based on MoS2-PEDOT:PSS nanocomposite for the detection of epirubicin in biological samples
    (Elsevier Inc., 2023) Er, Engin; Ateş, Ali Kemal
    Synthesizing of two dimensional (2D)-based nanomaterial and its sensing platform design is an attractive approach for quantitative purposed electrochemical applications. In this work, for the first time, we synthesized the molybdenum disulphide (CE-MoS2) nanosheets exfoliated by metal intercalation method and followed by the modification of their surfaces with Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) as a conductive polymer. The structural, morphological, and electrochemical characterization of CE-MoS2/PEDOT: PSS nanocomposite were performed by XPS, TGA, TEM and EIS. The portable electrochemical sensing platform was fabricated by the modification of CE-MoS2/PEDOT:PSS nanocomposite on screen-printed carbon electrode (SPCE). The electrochemical behaviour of epirubicin (EPB) was examined on SPCE modified with CE-MoS2/ PEDOT:PSS nanocomposite using cyclic and differential pulse voltammetry. CE-MoS2/PEDOT:PSS/SPCE demonstrated a promising electrocatalytic activity towards the oxidation of EPB, and analytical performance in the concentration range of 0.06 – 9.30 µM with a low detection limit of 44.3 nM. The human plasma samples containing EPB were successfully analyzed using CE-MoS2/PEDOT:PSS/SPCE with the satisfactory recoveries. The proposed sensing design could be an alternative strategy to produce the 2D-based nanoplatforms for electroanalytical applications in clinical samples.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Synthesis of cysteine modified MoS2 nanocomposite: A biocompatible electrochemical sensor material and its application to the determination of antidiabetic dapagliflozin
    (Wiley-V C H Verlag Gmbh, 2020) Ateş, Ali Kemal; Çelikkan, Hüseyin; Erk, Nevin; 0000-0002-5846-4436; 0000-0002-8016-3082; 0000-0001-5366-9275
    Herein, for the first time, a new generation cysteine modified MoS2(Cys@MoS2) based electrochemical sensor was reported. The electrochemical behaviour of dapagliflozin (DAP) was investigated through differential pulse voltammetry (DPV) on the developed sensor (Cys@MoS2/GCE). The transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR), x-ray diffraction spectroscopy (XRD) and x-ray photoelectron spectroscopy (XPS) methods were performed for structural and morphological characterizations of Cys@MoS(2)nanocomposite. On the surface of Cys@MoS2/GCE, an irreversible anodic peak was observed at 1324 mV. Under the optimal conditions, linear calibration curve with two working ranges between 2.0-60.0 mu M and 60.0-110.0 mu M were obtained and limit of detection was found to be 1.6 mu M. The developed sensor was successfully applied to determine the content of DAP in pharmaceutical sample with satisfying recovery results. It is concluded that Cys@MoS2/GCE is a reliable, easy to apply and cost-effective sensor for the routine DAP analysis in pharmaceutical samples.

| Dicle Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Dicle Üniversitesi, Diyarbakır, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim