Yazar "Andac, Muge" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Cadmium removal out of human plasma using ion-imprinted beads in a magnetic column(Elsevier, 2009) Candan, Nilgun; Tuzmen, Nalan; Andac, Muge; Andac, Cenk A.; Say, Ridvan; Denizli, AdilThe aim of this study is to utilize ion-imprinted magnetic beads in the selective removal of Cd2+ ions out of human plasma overdosed with Cd2+ ions. The Cd (2+) imprinted magnetic poly(HEMA-MAC) (mPHEMAC-Cd2+) beads were produced by suspension polymerization in the presence of magnetite Fe3O4 in a nano-powder form. The template Cd2+ ions could be reversibly detached from the matrix to form mPHEMAC-Cd2+ beads using 0.1 M thiourea solution. The specific surface area of the mPHEMAC-Cd2+ beads was found to be 24.7 m(2)/g. The MAC and Fe3O4 contents of the mPHEMAC-Cd2+ beads were found to be 41.8 mu mol/g polymer and 8.2% on the average. The Cd2+ adsorption capacity of mPHEMAC-Cd2+ columns decreased drastically from 48.8 mu mol/g to 20.0 mu mol/g as the flow rate is increased from 0.50 ml/min to 3.0 ml/min. The maximum adsorption capacity of the mPHEMAC-Cd2+ beads was determined to be 48.8 mu mol Cd2+/g on the average. The relative selectivity coefficients of the mPHEMAC beads for Cd2+/Pb2+ and Cd2+/Zn2+ were 22.6 and 160.7 times greater than those of the non-imprinted magnetic PHEMAC (mPHEMAC) beads, respectively. The mPHEMAC-Cd2+ beads are reusable for many times with no significant decrease in their adsorption capacities. (C) 2008 Elsevier B.V. All rights reserved.Öğe Molecular Recognition-Based Detoxification of Aluminum in Human Plasma(Taylor & Francis Ltd, 2009) Demircelik, Ahmet H.; Andac, Muge; Andac, Cenk A.; Say, Ridvan; Denizli, AdilMolecular recognition-based Al3+-imprinted poly(hydroxyethyl methacrylate-N-methacryloyl-L-glutamic acid) (PHEMAGA-Al3+) beads were prepared to be used in selective removal of Al3+ out of human plasma overdosed with Al3+ cations. The PHEMAGA-Al3+ beads were synthesized by suspension polymerization in the presence of a template-monomer complex (MAGA-Al3+). The specific surface area of PHEMAGA-Al3+ beads was found to be 55.6 m(2)/g on the average. The MAGA content in the PHEMAGA-Al3+ beads were found to be 640 mu mol/g polymer. The template Al3+ cations could be reversibly detached from the matrix to form PHEMAGA-Al3+ using a 50 mM solution of EDTA. The Al3+-free PHEMAGA-Al3+ beads were then exposed to a selective separation procedure of Al3+ out of human plasma, which was implemented in a continuous system by packing the beads into a separation column (10 cm long with an inner diameter of 0.9 cm) equipped with a water jacket to control the temperature. The Al3+ adsorption capacity of the PHEMAGA-Al3+ beads decreased drastically from 0.76 mg/g polymer to 0.22 mg/g polymer as the flow rate was increased from 0.3 ml/min to 1.5 ml/min. The relative selectivity coefficients of the PHEMAGA-Al3+ beads for Al3+/Fe3+, Al3+/Cu2+ and Al3+/Zn2+ were found to be 4.49, 8.95 and 32.44 times greater than those of the non-imprinted PHEMAGA beads, respectively. FT-IR analyses on the synthesized PHEMAGA-Al3+ beads reveals monodentate and bidentate binding modes of Al3+ in complex with the carboxylate groups of the glutamate residues. Density functional theory computations at the B3LYP/6-31G(d,p) basis set suggests that structured water molecules play essential role in the stability of the monodentate binding mode in 1:1 PHEMAGA-Al3+ complexes. The PHEMAGA-Al3+ beads were recovered and reused many times, with no significant decrease in their adsorption capacities. (C) Koninklijke Brill NV, Leiden, 2009Öğe Predicting the binding properties of cibacron blue F3GA in affinity separation systems(Elsevier, 2007) Andac, Cenk A.; Andac, Muge; Denizli, AdilThe binding properties of cibacron blue F3GA (CB-F3GA) bound to a model NAD(P)H/FAD(H-2)-dependent protein system, namely cytosolic quinone reductase (QR), was characterized by AMBER in an attempt to address the binding properties of immobilized CB-F3GA used in the separation of serum albumin. A favorable binding free energy of -4.52 kcal/mol (K-D = 5.09 x 10(-4) kcal/mol) was determined for CB-F3GA binding by MM-PBSA method, which was found to be a ballpark estimate of empirical values reported in literature (Delta G approximate to -6 kcal/mol). We propose that CB-F3GA primarily follows a class III binding motif in presence of FAD in the binding site of QR in solution, while a class II binding motif is observed in the crystal form. It was found that favorable van der Waals/hydrophobic interactions take place in the binding site making a major contribution to a favorably dominating enthalpy of binding (Delta H-tot = -25.87 kcal/mol) as compared to a disfavorable binding entropy term (T Delta S-tot = -21.35 kcal/mol). Additional MM-PBSA experiments in the absence of FAD gave rise to a disfavorable binding free energy for CB in complex with QR, suggesting that FAD is an essential determinant of CB-F3GA binding. This is in contrast to an earlier observation of Denizli et al. on separation of human serum albumin (HSA) by immobilized CB-F3GA in the absence of FAD. Therefore, a class I binding model for CB-F3GA is proposed here to account for the efficient separation of HSA in affinity chromatography systems. (C) 2007 Elsevier B.V. All rights reserved.