Yazar "Wickramasinghe, Janaka" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Early Stepdown Weaning of Dairy Calves with Glutamine and Branched-Chain Amino Acid Supplementations(Mdpi, 2022) Wickramasinghe, Janaka; Kaya, Can Ayhan; Beitz, Donald; Appuhamy, RangaSimple Summary We demonstrated previously that supplementation of glutamine (Gln) at 2.0% of dry matter intake (DMI) increased the rate at which dairy calves achieved >= 1.0 kg/d starter feed intake (SFI) during weaning. Because Gln supplements at <1.0% of DMI or branched-chain amino acid (BCAA) supplements have been shown to improve the performance of weaning piglets, we examined the effects of a lower dose of Gln (8.0 g/d equivalent to 1% of DMI) alone or in combination with BCAA supplementations on SFI and average daily gain (ADG) in this study. Amino acids did not affect SFI or ADG during the supplementations but decreased post-weaning SFI in an additive manner even though the ADG was not affected. The blood analysis on the last day of supplementations revealed a possibility for the Gln and BCAA supplementations to suppress SFI through leptin and serotonin secreted by the gastrointestinal tract. The study objective was to examine the effects of supplementing Gln and BCAA on the SFI and ADG of weaning dairy calves. Holstein heifer calves (11 calves /treatment) at 35 d of age were assigned to: (1) no amino acids (CTL), (2) Gln (8.0 g/d) alone (GLN), or (3) Gln (8.0 g/d) and BCAA (GLNB; 17.0, 10.0, and 11.0 g/d leucine, isoleucine, and valine, respectively) supplementations in whole milk during a stepdown weaning scheme. Calves were weaned completely once they achieved >= 1.0 kg/d SFI. Neither GLN nor GLNB affected SFI or ADG in the first week during weaning. The GLNB decreased SFI compared to CTL, but the SFI was similar between CTL and GLN in the remainder of the weaning scheme. All calves were weaned at 50 d of age. The SFI of GLNB was lower than that of GLN, and the SFI of both GLN and GLNB were lower than CTL post-weaning. The decreased SFI did not alter ADG during weaning or post-weaning. The GLNB tended to have higher plasma leptin and lower plasma serotonin concentrations compared to CTL. Glutamine and BCAA seem to affect the SFI of calves by modulating the secretions of endocrine cells in the gastrointestinal tract.Öğe Evaluating ruminal and small intestinal morphology and microbiota composition of calves fed a macleaya cordata extract preparation(MDPI, 2023) Wickramasinghe, Janaka; Anderson, Chiron J.; Kaya, Can Ayhan; Gorden, Patrick J.; Ribeiro, Flavio Rodrigues Borges; Dohms, Juliane; Rigert, Sydney; Schmitz-Esser, Stephan; Appuhamy, RangaThe objective was to determine the impact of feeding MCE on ruminal and intestinal morphology and microbiota composition of calves. A total of 10 male and 10 female crossbred (dairy × beef) calves (6 d of age) were assigned randomly to control (CTL; n = 10) or MCE-supplemented (TRT; n = 10) groups. The MCE was fed in the milk replacer and top-dressed on the calf starter during pre-weaning (6 to 49 d) and post-weaning (50 to 95 d) periods, respectively. Calves were slaughtered at 95 d to collect rumen and intestinal samples to determine volatile fatty acid (VFA) profile, mucosal morphology, and microbiota composition. The effects of MCE were analyzed by accounting for the sex and breed effects. Feeding MCE increased rumen papillae length (p = 0.010) and intestinal villus height: crypt depth (p < 0.030) compared to CTL but did not affect rumen VFA profile. The TRT had a negligible impact on microbial community composition in both the rumen and the jejunum. In conclusion, feeding MCE from birth through weaning can improve ruminal and small intestinal mucosa development of calves despite the negligible microbiota composition changes observed post-weaning.