Yazar "Volkan, Muervet" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Carboligation reactions with benzaldehyde lyase immobilized on superparamagnetic solid support(Royal Soc Chemistry, 2009) Sopaci, S. Betuel; Turan, Ilke Simsek; Tural, Bilsen; Volkan, Muervet; Demir, Ayhan S.Histidine-tagged recombinant benzaldehyde lyase (BAL, EC 4.1.2.38) was efficiently immobilized to surface-modified magnetic particles with affinity ligand binding. In addition to conventional benzoin condensation reactions, two important representative BAL-catalyzed carboligation reactions, were also performed with this magnetically responsive biocatalyst. The results obtained from the carboligation reactions that were performed with this simple and convenient heterogenous biocatalyst were comparable to that of free-enzyme-catalyzed reactions.Öğe Preparation and characterization of ni-nitrilotriacetic acid bearing Poly(Methacrylic acid) coated superparamagnetic magnetite nanoparticles(Amer Scientific Publishers, 2008) Tural, Bilsen; Kaya, Murat; Oezkan, Necati; Volkan, MuervetStable superparamagnetic magnetite (Fe3O4) nanoparticles were synthesized via co-precipitation in the presence of poly(methacrylic acid) (PMAA) in aqueous solution. The polymer coated Fe3O4 nanoparticles were characterized using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, thermal analysis, and vibrating sample magnetometry (VSM) techniques. These measurements reveal the presence of magnetite nanoparticles with a size of approximately 8 nm inside the PMAA matrix. The magnetization value of these superparamagnetic nanoparticles at room temperarure and 7 T was measured as about 40 emu/g. PMAA-coated Fe3O4 nanoparticles were further assembled with Ni-chelate through a reaction between a primary amine-bearing NTA (nitrilotriacetic acid) ligand and carboxy-functional groups of PMAA. NTA-PMAA-coated magnetite nanoparticles were then loaded with nickel ions and characterized using FTIR. The average amount of binded Ni on the surface of the NTA-modified PMAA coated Fe3O4 was calculated as 1.65 +/- 0.3 x 10(-6) mol nickel(II) ions per g of the magnetic particles from the inductively coupled plasma optical emission spectroscopy (ICP-OES) measurements.Öğe Rapid synthesis and characterization of maghemite nanoparticles(Amer Scientific Publishers, 2008) Tural, Bilsen; Oezenbas, Macit; Atalay, Selcuk; Volkan, MuervetFe2O3-SiO2 nanocomposites were prepared by a sol-gel method using various evaporation surface to volume (S/V) ratios ranging from 0.03 to 0.2. The Fe2O3-SiO2 sols were gelated at various temperatures ranging from 50 degrees C to 70 degrees C, and subsequently they were calcined in air at 400 degrees C for 4 hours. The structure and the magnetic properties of the prepared Fe2O3-SiO2, nanocomposites were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), differential thermal analysis (DTA), and vibrating sample magnetometer (VSM) measurements. The gelation temperature of the Fe2O3-SiO2 sols influenced strongly the particle size and crystallinity of the maghemite nanoparticles. It was observed that the particle size of maghemite nanoparticles increased with the increasing of the gelation temperature of the sols, which may be due to the agglomeration of the maghemite particles at elevated temperatures inside the microporosity of the silica matrix during the gelation process, and the subsequent calcination of these gels at 400 degrees C resulted in the formation of large size iron oxide particles. Magnetization studies at temperatures of 10, 195, and 300 K showed superparamagnetic behavior for all the nanocomposites prepared using the evaporation surface to volume ratio (S/V) of 0.1, 0.2, 0.09, and 0.08. The saturation magnetization, Ms, values measured at 10 K were 5.5, 8.5, and 9.5 emu/g, for the samples gelated at 50, 60, and 70 degrees C, respectively. At the gelation temperature of 70 degrees C, gamma-Fe2O3 crystalline superparamagnetic nanoparticles with the particle size of 9 +/- 2 nm were formed in 12 hours for the samples prepared at the S/V ratio of 0.2.