Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Ucan M." seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Comparison of Deep Learning Models for Body Cavity Fluid Cytology Images Classification
    (Institute of Electrical and Electronics Engineers Inc., 2022) Ucan M.; Kaya B.; Kaya M.
    Disease detection is successfully performed in many medical fields using medical images and deep learning architectures. Deep learning architectures used in many fields such as brain images, gastroenterological images and chest x-rays support doctors in the detection of diseases. By using deep learning architectures, diseases can be detected more accurately and faster. With faster detection of diseases, treatment can be started more quickly. Early and accurate diagnosis of cytology images is also very important. After the cytology samples are taken from the patients in general health screenings, they should be interpreted by specialist doctors. The aim of this study is to detect benign and malignant cells from cytology images quickly and accurately. In this study, the Body Cavity Fluid Cytology Images dataset, which includes the data of a total of 21 patients with 14 malignant and 7 benign samples, was used. The dataset contains 693 images of 256x192 size. The images in the dataset are trained using the still popular ResNet50, GoogleNet and AlexNet classification architectures. The classification results obtained were compared with other studies using the same data set. As a result of the test processes, AlexNet architecture achieved 97.26%, GoogleNet architecture 98.12% and ResNet50 architecture 99.13% classification accuracy. The ResNet50 architecture with the best classification result achieved 99.25% specificity, 98.75% sensitivity and 99.13% accuracy. Training and testing in this study showed that the ResNet50 architecture classifies cytology images most successfully. © 2022 IEEE.

| Dicle Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Dicle Üniversitesi, Diyarbakır, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim