Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Tutar, H." seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    School-based optimization for performance-based optimum seismic design of steel frames
    (Springer, 2021) Degertekin, S. O.; Tutar, H.; Lamberti, L.
    The performance-based optimum seismic design of steel frames is one of the most complicated and computationally demanding structural optimization problems. Metaheuristic optimization methods have been successfully used for solving engineering design problems over the last three decades. A very recently developed metaheuristic method called school-based optimization (SBO) will be utilized in the performance-based optimum seismic design of steel frames for the first time in this study. The SBO actually is an improved/enhanced version of teaching-learning-based optimization (TLBO), which mimics the teaching and learning process in a class where learners interact with the teacher and between themselves. Ad hoc strategies are adopted in order to minimize the computational cost of SBO results. The objective of the optimization problem is to minimize the weight of steel frames under interstory drift and strength constraints. Three steel frames previously designed by different metaheuristic methods including particle swarm optimization, improved quantum particle swarm optimization, firefly and modified firefly algorithms, teaching-learning-based optimization, and JAYA algorithm are used as benchmark optimization examples to verify the efficiency and robustness of the present SBO algorithm. Optimization results are compared with those of other state-of-the-art metaheuristic algorithms in terms of minimum structural weight, convergence speed, and several statistical parameters. Remarkably, in all test problems, SBO finds lighter designs with less computational effort than the TLBO and other methods available in metaheuristic optimization literature.

| Dicle Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Dicle Üniversitesi, Diyarbakır, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim