Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Taskesen, Hatice" seçeneğine göre listele

Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Existence of Global Solutions for a Multidimensional Boussinesq-Type Equation with Supercritical Initial Energy
    (Amer Inst Physics, 2012) Taskesen, Hatice; Polat, Necat
    In this work, global weak solutions of the multidimensional Boussinesq-type equation with power type nonlinearity gamma vertical bar u vertical bar(p), gamma > 0 and supercritical initial energy is given by potential well method. Classical energy methods can not guarantee the global existence for this type of nonlinearity. As is known the functional I (u) defined for potential well method includes only the initial displacement, and by use of sign invariance of this functional one can only prove the global existence for critical and subcritical initial energy. In the case of supercritical initial energy such a functional fails to prove the global existence. A new functional is defined, which contains not only initial displacement, but also initial velocity.
  • [ X ]
    Öğe
    Existence results for a nonlinear Timoshenko equation with high initial energy
    (Amer Inst Physics, 2015) Taskesen, Hatice; Polat, Necat
    The aim of the present paper is to study the initial -boundary value problem for a nonlinear Timoshenko equation with high energy initial data. Existence of global weak solutions is proved by sign preserving property of a new functional which is introduced for the potential well method.
  • [ X ]
    Öğe
    Global existence and decay of solutions for the generalized bad Boussinesq equation
    (Zhejiang Univ, Editorial Committee Applied Mathematics, 2013) Taskesen, Hatice; Polat, Necat; Ertas, Abdulkadir
    In this paper, we consider the global existence of solutions for the Cauchy problem of the generalized sixth order bad Boussinesq equation. Moreover, we show that the supremum norm of the solution decays algebraically to zero as (1 + t)(-(1/7)) when t approaches to infinity, provided the initial data are sufficiently small and regular.
  • [ X ]
    Öğe
    On the Existence of Global Solutions for a Nonlinear Klein-Gordon Equation
    (Univ Nis, Fac Sci Math, 2014) Polat, Necat; Taskesen, Hatice
    The aim of this work is to study the global existence of solutions for the Cauchy problem of a Klein-Gordon equation with high energy initial data. The proof relies on constructing a new functional, which includes both the initial displacement and the initial velocity: with sign preserving property of the new functional we show the existence of global weak solutions.

| Dicle Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Dicle Üniversitesi, Diyarbakır, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim