Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Ozturkmen, Gokmen" seçeneğine göre listele

Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    A comparison of a blower and a Venturi aeration system in a submerged membrane bioreactor
    (Desalination Publ, 2017) Kayaalp, Necati; Ozturkmen, Gokmen; Gul, Ertugrul; Gunay, Elif
    A novel aeration method for submerged membrane bioreactors (MBR) was developed in this study. This method uses a Venturi injector to supply the air to the MBR. Short term experiments were performed to determine the technical applicability of integrating a venturi device into a submerged MBR. A flat-sheet, 0.1-mu m polyvinylidene fluoride membrane was used to operate the MBR. Real wastewater taken from Diyarbakir Municipal Wastewater Treatment Plant was used as feed. Membrane fouling was evaluated under three different fluxes (18, 32, and 50 L/m(2) . h) and 3 L/min aeration rate for both blower-and venturi-aerated MBR systems. Transmembrane pressure (TMP), chemical oxygen demand (COD), mixed liquor suspended solids, mixed liquor volatile suspended solids, pH, dissolved oxygen, and temperature were measured in the experimental setup. The COD removal rate was between 75-92% for blower system and 85-87% for venturi system. Effluent NH4-N concentration was between 0.0-14.7 mg/L for blower system and 0.0-0.7 for venturi system. While the effluent NO3-N was between 3.1-27.4 mg/L for blower system, it was 33.3-37.8 mg/L for venturi system. At 3 L/min aeration rate, the dissolved oxygen concentration in MBR was between 0.42-3.43 mg/L for blower-aerated system and between 6.43-7.07 mg/L for venturi-aerated system. TMP development at different fluxes in blower and venturi systems showed that integration of a venturi device with a submerged MBR improved filtration capacity significantly. The rate of TMP increase in blower-aerated system was higher than that of venturi-aerated system at the same aeration rate of 3 L/min for both systems. At the highest filtration flux tested (50 L/m(2) . h), venturi-aerated system operated three times longer than the blower system.
  • [ X ]
    Öğe
    A Novel Approach to Power Flow Analysis for Grid Connected Micro Grid
    (Ieee, 2015) Efe, Serhat Berat; Cebeci, Mehmet; Erdogan, Huseyin; Ozturkmen, Gokmen
    This paper proposes a neural network based power flow analysis method that applied on a grid connected and ring-shaped micro grid. As the use of micro grids increasing rapidly, it becomes necessary to analyze them for different operating and loading conditions as large power systems. At the outset, a MG is designed and simulated under MATLAB / Simulink platform. Normal operation data collected and stored. Then, different loading scenarios performed, operational data collected and stored to use for proposed method. Intelligent systems are used to process these data and also for training. After training a fully different scenario is created and the effectiveness of the proposed method is verified through simulation study. Also a fault condition analysis is performed for validity.
  • [ X ]
    Öğe
    A venturi device reduces membrane fouling in a submerged membrane bioreactor
    (Iwa Publishing, 2016) Kayaalp, Necati; Ozturkmen, Gokmen
    In this study, for the first time, a venturi device was integrated into a submerged membrane bioreactor (MBR) to improve membrane surface cleaning and bioreactor oxygenation. The performances of a blower and the venturi device were compared in terms of membrane fouling and bioreactor oxygenation. Upon comparing membrane fouling, the performances were similar for a low operation flux (18 L/m(2).h); however, at a medium flux (32 L/m(2).h), the venturi system operated 3.4 times longer than the blower system, and the final transmembrane pressure was one-third that of the blower system. At the highest flux studied (50 L/m(2).h), the venturi system operated 5.4 times longer than the blower system. The most notable advantage of using a venturi device was that the dissolved oxygen (DO) concentration of the MBR was in the range of 7 to 8 mg/L at a 3 L/min aeration rate, while the DO concentration of the MBR was inadequate (a maximum of 0.29 mg/L) in the blower system. A clean water oxygenation test at a 3 L/min aeration rate indicated that the standard oxygen transfer rate for the venturi system was 9.5 times higher than that of the blower system.

| Dicle Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Dicle Üniversitesi, Diyarbakır, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim