Yazar "Karakas, Duygu Elma" seçeneğine göre listele
Listeleniyor 1 - 7 / 7
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Application of half-sandwich metal-phosphinite compounds to biological activities: Determine the energies of the HOMO and LUMO levels(Wiley-V C H Verlag Gmbh, 2023) Meriç, Nermin; Rafikova, Khadichakhan; Zazybin, Alexey; Güzel, Remziye; Kayan, Cezmi; Karakas, Duygu Elma; Dündar, Abdurrahman; Aydemir, MuratMononuclear transition metal complexes 1-(furan-2-yl)ethyldiphenyl[dichloro(eta(6)-p-cymene)ruthenium(II)]phosphinite, (2), 1-(furan-2-yl)ethyldiphenyl[dichloro(eta(6)-benzene) ruthenium(II)] phosphinite (3), 1-(furan-2-yl)ethyldipheny[chloro(eta(4)-1,5-cyclooctadiene)rhodium(I)]phosphinite (4), 1-(furan-2-yl)ethyldiphenyl[dichloro (eta(5)pentamethylcyclopentadienyl)iridium (III)] phosphinite (5) were synthesized and characterized by microanalysis, infrared, MS, and NMR spectroscopy. The biological activities of the complexes were also tested. Compounds 2 and 5 were the best complexes at DPPH radical scavenging and reducing power activity at 73.27 % and 0.41 at 200 mu g/mL, respectively. The highest antimicrobial activity exhibited by complex 3 as 14 mm inhibition zone against S. aureus. All of the complexes have cleaved the DNA from the double-strand and exhibited three bands on gel electrophoresis. Moreover, cyclic voltammetry studies of the phosphinite complexes were carried out to determine the energies of the HOMO and LUMO levels as well as to estimate their electrochemical and some electronic properties.Öğe Asymmetric transfer hydrogenation of alkyl/aryl or alkyl/methyl ketones catalyzed by known C2-symmetric ferrocenyl-based chiral bis(phosphinite)-Ru(II), Rh(I) and Ir(III) complexes(Elsevier Science Sa, 2016) Durap, Feyyaz; Karakas, Duygu Elma; Ak, Bunyamin; Baysal, Akin; Aydemir, MuratKnown Ru(II), Rh(I) and Ir(III) complexes of C-2-symmetric ferrocenyl based chiral bis(phoshinite) ligands were catalyzed the asymmetric transfer hydrogenation of alkyl/aryl or alkyl methyl ketones. Corresponding secondary alcohols were obtained with high enantioselectivities up to 98% ee and reactivities using iso-propanol as the hydrogen source. (C) 2016 Elsevier B.V. All rights reserved.Öğe Chiral C2-symmetric ?6-p-cymene-Ru(II)-phosphinite complexes: Synthesis and catalytic activity in asymmetric reduction of aromatic, methyl alkyl and alkyl/aryl ketones(Elsevier Science Sa, 2018) Karakas, Duygu Elma; Aydemir, Murat; Durap, Feyyaz; Baysal, AkinChiral C-2-symmetric bis(phosphinite) ligands and their binuclear ruthenium(II) complexes have been synthesized and used as catalysts in the ruthenium-catalyzed asymmetric transfer hydrogenation of aromatic, methyl alkyl and alkyl/aryl ketones using 2-propanol as both the hydrogen source and solvent in the presence of KOH. Under optimized conditions, all complexes showed high catalytic activity as catalysts in the reduction of various ketones to corresponding chiral secondary alcohols. Products were obtained with high conversions (99%) and moderate to good enantioselectivities (82% ee). Furthermore, C2-symmetric bis(phosphinite) ligands and their binuclear ruthenium(II) complexes were characterized by multinuclear NMR spectroscopy, FT-IR spectroscopy, LC/MS-MS and elemental analysis. (C) 2017 Elsevier B.V. All rights reserved.Öğe Chiral phosphinites as efficient ligands for enantioselective Ru(II), Rh(I) and Ir(III)-catalyzed transfer hydrogenation reactions(Springer, 2017) Baysal, Akin; Karakas, Duygu Elma; Meric, Nermin; Ak, Bunyamin; Aydemir, Murat; Durap, FeyyazMetal-catalyzed enantioselective transfer reduction of ketones to enantiomerically enriched chiral alcohols has recently attracted attention. Therefore, a series of methyl alkyl or alkyl/aryl ketones have been reduced by using Ru(II), Rh(I) and Ir(III) catalysts based on C (2)-symmetric chiral ferrocenyl phosphinite ligands. The corresponding optically active secondary alcohols were obtained in excellent conversions and moderate-to-good enantioselectivities. The best results were obtained with an iridium catalyst, giving up to 98% conversion and 80% ee.Öğe Novel ruthenium and palladium complexes as potential anticancer molecules on SCLC and NSCLC cell lines(Springer International Publishing Ag, 2020) Tokgun, Onur; Karakas, Duygu Elma; Tan, Semih; Karagur, Ege Riza; Inal, Behcet; Akca, Hakan; Durap, FeyyazLung cancer is one of the major causes of cancer-related deaths in the world. Non-small-cell lung cancer (NSCLC) is the most common type of lung cancer, and small-cell lung cancer (SCLC) is the most aggressive subtype of lung cancer. Proper therapies for SCLC have not yet been developed. However, new molecules have been designed and big innovation in treating SCLC has been achieved. Platinum-based antitumor drugs like cisplatin and carboplatin have several disadvantages including side effects, cisplatin-resistant tumors and limited solubility in aqueous media. Thus, two novel chiral aminoalcohol-based bis(phosphinite) ligands containing (eta(6)-p-cymene)-Ru(II)-phosphinite and bis(phosphinite)-Pd(II) complexes were synthesized and evaluated for anticancer activity. In this study, the results showed that complex1has the strongest cytotoxic effects on SCLC and NSCLC cell lines. On the other hand, cisplatin, ruthenium and palladium complexes are capable to induce apoptosis. Especially, complexes1and2can induce apoptosis for both SCLC and NSCLC. When compared to the qRT-PCR and TUNEL results, we obtained a significant correlation between apoptotic index and p21, Bax gene expressions. This work revealed the potential of the synthesized complexes as anticancer agents with cytotoxic and pro-apoptotic activity as leading compounds for further anticancer researches.Öğe SYNTHESIS OF NOVEL BIS(PHOSPHINO)AMINE-RUII(ACAC)2 COMPLEXES, AND INVESTIGATION OF CATALYTIC ACTIVITY IN TRANSFER HYDROGENATION(2022) Baysal, Akın; Karakas, Duygu Elma; Aydemir, Murat; Durap, Feyyaz; Işık, UğurIn this study, reactions of (PPh2)2NCH2CH2N(PPh2)2 (L1) and {(PPh2)2NCH2CH2}3N (L2) with [RuII(acac)2(CH3CN)2] led to the production of new dinuclear complex [Ru(acac)2]2(L1) (1) and trinuclear complex [Ru(acac)2]3(L2) (2). Complex 1 and 2 are excellent candidates for the role of catalyst precursors in the transfer hydrogenation (TH) of acetophenone and its derivatives. Compared to complex (1), the trinuclear complex (2) is an exceptional catalyst, producing the corresponding alcohols in 98–99% yields in 20 minutes at 80 oC (TOF?300 h-1 ) for the TH process. A comparison of the catalytic properties of the complexes is also briefly discussed. Complex structures have also been characterized by combining nuclear magnetic resonance (NMR), Fourier Transform Infrared (FT-IR), and elemental analysis.Öğe Transfer hydrogenation reaction using novel ionic liquid based Rh(I) and Ir(III)-phosphinite complexes as catalyst(Elsevier Science Sa, 2016) Karakas, Duygu Elma; Durap, Feyyaz; Baysal, Akin; Ocak, Yusuf Selim; Rafikova, Khadichakhan; Kaya, Eda Cavus; Zazybin, AlexeyHydrogen transfer reduction methods are attracting increasing interest from synthetic chemists in view of their operational simplicity. Thus, interaction of [Rh(mu-Cl)(cod)](2) and Ir(eta(5)-C5Me5)(mu-Cl)Cl](2) with phosphinite ligand [(Ph2PO)-C7H11N2Cl]Cl, 1 gave new monodendate (1-chloro-3-(3-methylimidazolidin1-yl)propan-2-yl diphenylphosphinite chloride) (chloro eta(4)-1,5-cyclooctadiene rhodium(I))], 2 and (1chloro-3-(3-methylimidazolidin-1-yl)propan-2-yl diphenylphosphinite chloride) (dichloro n.5-pentamethylcyclopentadienyl iridium(III))1, 3 complexes, which were characterized by a combination of multinuclear NMR spectroscopy, IR spectroscopy, and elemental analysis. H-1-{P-31}NMR, H-1-C-13 HETCOR or H-1-H-1 COSY correlation experiments were used to confirm the spectral assignments. The novel catalysts were applied to transfer hydrogenation of acetophenone derivatives using 2-propanol as a hydrogen source. The results showed that the corresponding alcohols could be obtained with high activity (up to 99%) under mild conditions. Notably, (1-chloro-3-(3-methylimidazolidin-1-yl)propan-2-y1 diphenylphosphinite chloride) (chloro eta(4)-1,5-cyclooctadiene rhodium(I))], 2 complex is much more active than the other analogous complex, 3 in the transfer hydrogenation. Furthermore, compound, 2 acts as excellent catalysts, giving the corresponding alcohols in 97-99% conversions in 5 min (TOF <= 1176 h(-1)). (C) 2016 Elsevier B.V. All rights reserved.