Yazar "Hokelek, Tuncer" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe 9H-Carbazole-9-carbothioic dithioperoxyanhydride(Int Union Crystallography, 2013) Uludag, Nesimi; Ates, Murat; Delibas, Nagihan Caylak; Celik, Omer; Hokelek, TuncerThe whole molecule of the title compound, C26H16N2S4, is generated by twofold rotational symmetry. The carbazole skeleton is nearly planar [maximum deviation = 0.054 (5)angstrom]. In the crystal, aromatic pi-pi stacking is observed between parallel carbazole ring systems of adjacent molecules, the shortest centroid-centroid distances between pyrrole and benzene rings being 3.948 (3) and 3.751 (3) angstrom.Öğe Ethyl 2-[(2-hydroxybenzylidene)amino]-6-methyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxylate(Int Union Crystallography, 2013) Colak, Naki; Kose, Dursun Ali; Marim, Nazmiye; Celik, Omer; Hokelek, TuncerThe title compound, C18H20N2O3S, exists as the phenol-imine form in the crystal and there are bifurcated intramolecular O-H center dot center dot center dot(N/O) hydrogen bonds present. The conformation about the C=N bond is anti (1E); the C=N imine bond length is 1.287 (4) angstrom and the C=N-C angle is 122.5 (3)degrees. In the tetrahydrothienopyridine moiety, the six-membered ring has a flattened-boat conformation. In the crystal, molecules are stacked nearly parallel to (110) and a weak C-H center dot center dot center dot pi interaction is observed. The carbonyl O atom is disordered over two positions and was refined with a fixed occupancy ratio of 0.7:0.3.Öğe Syntheses, structural characterization and biological activities of spiro-ansa-spiro-cyclotriphosphazenes(Royal Soc Chemistry, 2015) Basterzi, Nisan Sevin; Kocak, Selen Bilge; Okumus, Aytug; Kilic, Zeynel; Hokelek, Tuncer; Celik, Omer; Turk, MustafaThe replacement reactions of the Cl-atoms in partly substituted spiro-ansa-spiro-cyclotriphosphazenes (7 and 8) with excess pyrrolidine, 4-(2-aminoethyl) morpholine, and 1,4-dioxa-8-azaspiro[4,5] decane in dry THF led to the formation of heterocyclic amine substituted cyclotriphosphazenes (9a-c and 10a-c). All cyclotriphosphazene derivatives were characterized by elemental analysis, FTIR, MS, 1D H-1, C-13 and P-31 NMR and 2D HSQC, and HMBC techniques, and the crystal structure of partly substituted cyclotriphosphazene 8 was verified by X-ray diffraction analysis. Cyclotriphosphazene derivatives (5-8, 9a-c, and 10a-c) were subjected to antimicrobial activity against seven clinic bacteria and one yeast strain, and the interactions of the phosphazenes with plasmid pBR322 DNA were investigated. Phosphazene derivatives [(5, 7, 8, 9b and 9c) and (10a and 10b)] caused a slight increase and substantial decrease in the mobility of form I DNA, respectively, while 9a caused retardation on gel. Cytotoxic, apoptotic and necrotic effects against L929 fibroblast and A549 lung cancer cells were also evaluated. While the highest toxic effect was obtained for 9a in L929 fibroblast cells and for 9c in A549 lung cancer cells at 100 mg mL(-1) concentration, the highest apoptotic effect was determined for 10a in L929 fibroblast cells and for 9a in A549 lung cancer cells at the same concentration. It was found that 9a and 10b exhibited the most necrotic effects against L929 fibroblast and A549 lung cancer cells, respectively. The toxic and necrotic effects of the phosphazenes against A549 lung cancer cells were greater than those against L929 fibroblast cells, whereas, the apoptotic effect of the compounds was greater in L929 fibroblast cells than in A549 lung cancer cells.