Yazar "Gulsun, B." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Effects of Melatonin on Tibia Bone Defects in Rats(Soc Chilena Anatomia, 2016) Koparal, M.; Irtegun, S.; Alan, H.; Deveci, E.; Gulsun, B.; Pektanc, G.The aim of this study was to evaluate the effects of melatonin healing in a tibial bone defect model in rats by means of histopathological and immunohistochemistry analysis. Twenty one male Wistar albino rats were used in this study. In each animal, bone defects (6 mm length) were created in the tibias. The animals were divided into three groups. In group 1 control group (rats which tibial defects). Group 2 melatonin (10 mg/kg) + 14 days in the tibial defect group) was administered intraperitoneally to rats. Group 3 melatonin (10 mg/kg) + 28 days in the tibial defect group) was administered intraperitoneally to rats. Histopathological analysis of samples was performed to evaluate the process of osteoblastic activity, matrix formation, trabecular bone formation and myeloid tissue in bone defects. Immunohistochemical and immunoblot analysis demonstrated non-collagenous proteins (osteopontin and osteonectin) differences in tibial bone defects. The expression of osteopontin on tibia was increased by 14 days melatonin treatment. The expression of osteonectin on tibia was dramatically increased by 14 days melatonin treatment.Öğe Effects of mesenchymal stem cells in critical size bone defect(Verduci Publisher, 2012) Agacayak, S.; Gulsun, B.; Ucan, M. C.; Karaoz, E.; Nergiz, Y.Background and Objectives: The aim of this study was to compare culture-expanded, bone marrow-derived mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP) loaded to biphasic calcium phosphate (BCP) bone ceramic in the repair of rat calvarial bone. Materials and Methods: Critical-size (7 mm dia.) calvarial defects were prepared in the frontal-parietal bones of 90 adult female Sprague-Dawley rats. Rats were randomly divided into 5 groups, according to defect filling, as follows: Group I (n=21), BCP; Group II (n=21), BCP+PRP; Group III (n=21), BCP+MSC; Group IV (n=21), BCP+PRP+MSC; Group V (n=6) (control), no treatment. Animals were sacrificed at 2, 8 and 12 weeks postsurgery and bone regeneration was evaluated both histologically and immunohistochemically. Results: Statistically significant differences were observed in bone osteoblastic activity in calvarial defects among the groups (p < 0.05). PRP and MSC used in combination with BCP as a defect filling resulted in greater osteoblastic bone formation activity when compared to the use of BCP alone. Conclusions: The combination of mesenchymal stem cells, platelet rich plasma and synthetic bone substitute was found to be more effective in inducing new bone formation (osteogenesis) than the use of platelet rich plasma combined with synthetic bone substitute and the use of synthetic bone substitute alone.