Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Erdal, Nurten" seçeneğine göre listele

Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    The Effect of Long-Term Extremely Low-Frequency Magnetic Field on Geometric and Biomechanical Properties of Rats' Bone
    (Taylor & Francis Inc, 2010) Akdag, M. Zulkuf; Dasdag, Suleyman; Erdal, Nurten; Buyukbayram, Huseyin; Gurgul, Serkan
    Bone is composed of a mineral matrix reinforced by a network of collagen that governs the biomechanical functions of the skeletal system in the body. The purpose of the study was to investigate the possible effect of extremely low-frequency magnetic field (ELF-MF) on geometric and biomechanical properties of rats' bone. In this study, 30 male Sprague-Dawley rats were used. The rats were divided into three groups: two experimental and one control sham. The first and second experimental group (n = 10) were exposed to 100 mu T and 500 mu T-MF during 10 months, 2 h a day, respectively, and the third (sham) (n = 10) group was treated like experimental group except ELF-MF exposure in methacrylate boxes. After ELF-MF and sham exposure, geometric and the biomechanical properties of rats' bone, such as cross-sectional area of the femoral shaft, length of the femur, cortical thickness of the femur, ultimate tensile strength (maximum load), displacement, stiffness, energy absorption capacity, elastic modulus, and toughness of bone were determined. The geometric and biomechanical analyses showed that a significant decrease in rats exposed to 100 mu T-MF in comparison to sham and 500 mu T-MF exposed rats about the values of cross-sectional area of the femoral shaft (P < 0.05). Maximum load increased in 100 mu T-MF and 500 mu T-MF exposed rats when compared to that of the sham rats (P < 0.05). The cortical thickness of the femurs of MF-exposed rats (100 mT and 500 mT) were significantly decreased in comparison to that of sham groups' rats (P < 0.05 and P < 0.001). However, no significant differences were found in the other biomechanical endpoints between each other groups, such as: length of the femur, displacement, stiffness, energy absorption capacity, elastic modulus, and toughness of bone (P > 0.05). These experiments demonstrated that 100 mu T-MF and 500 mu T-MF can affect biomechanical and geometrical properties of rats' bone.
  • [ X ]
    Öğe
    Effects of 2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on microRNA expression in brain tissue
    (Taylor & Francis Ltd, 2015) Dasdag, Suleyman; Akdag, Mehmet Zulkuf; Erdal, Mehmet Emin; Erdal, Nurten; Ay, Ozlem Izci; Ay, Mustafa Ertan; Yilmaz, Senay Gorucu
    Purpose: MicroRNAs (miRNA) play a paramount role in growth, differentiation, proliferation and cell death by suppressing one or more target genes. However, their interaction with radiofrequencies is still unknown. The aim of this study was to investigate the long-term effects of radiofrequency radiation emitted from a Wireless Fidelity (Wi-Fi) system on some of the miRNA in brain tissue. Materials and methods : The study was carried out on 16 Wistar Albino adult male rats by dividing them into two groups such as sham (n = 8) and exposure (n = 8). Rats in the exposure group were exposed to 2.4 GHz radiofrequency (RF) radiation for 24 hours a day for 12 months (one year). The same procedure was applied to the rats in the sham group except the Wi-Fi system was turned off. Immediately after the last exposure, rats were sacrificed and their brains were removed. miR-9-5p, miR-29a-3p, miR-106b-5p, miR-107, miR-125a-3p in brain were investigated in detail. Results: The results revealed that long-term exposure of 2.4 GHz Wi-Fi radiation can alter expression of some of the miRNAs such as miR-106b-5p (adj p* = 0.010) and miR-107 (adj p* = 0.005). We observed that mir 107 expression is 3.3 times and miR-106b-5p expression is 3.65 times lower in the exposure group than in the control group. However, miR-9-5p, miR-29a-3p and miR-125a-3p levels in brain were not altered. Conclusion: Long-term exposure of 2.4 GHz RF may lead to adverse effects such as neurodegenerative diseases originated from the alteration of some miRNA expression and more studies should be devoted to the effects of RF radiation on miRNA expression levels.
  • [ X ]
    Öğe
    Long term and excessive use of 900 MHz radiofrequency radiation alter microRNA expression in brain
    (Taylor & Francis Ltd, 2015) Dasdag, Suleyman; Akdag, Mehmet Zulkuf; Erdal, Mehmet Emin; Erdal, Nurten; Ay, Ozlem Izci; Ay, Mustafa Ertan; Yilmaz, Senay Gorucu
    Purpose : We still do not have any information on the interaction between radiofrequency radiation (RF) and miRNA, which play paramount role in growth, differentiation, proliferation and cell death by suppressing one or more target genes. The purpose of this study was to bridge this gap by investigating effects of long-term 900 MHz mobile phone exposure on some of the miRNA in brain tissue. Materials and methods : The study was carried out on 14 Wistar Albino adult male rats by dividing them into two groups: Sham (n = 7) and exposure (n = 7). Rats in the exposure group were exposed to 900 MHz RF radiation for 3 h per day (7 days a week) for 12 months (one year). The same procedure was applied to the rats in the sham group except the generator was turned off. Immediately after the last exposure, rats were sacrificed and their brains were removed. rno-miR-9-5p, rno-miR-29a-3p, rno-miR-106b-5p, rno-miR-107 and rno-miR-125a-3p in brain were investigated in detail. Results : Results revealed that long-term exposure of 900 MHz RF radiation only decreased rno-miR107 (adjP* = 0 .045) value where the whole body (rms) SAR value was 0.0369 W/kg. However, our results indicated that other microRNA evaluated in this study was not altered by 900 MHz RF radiation. Conclusion : 900 MHz RF radiation can alter some of the miRNA, which, in turn, may lead to adverse effects. Therefore, further studies should be performed.
  • [ X ]
    Öğe
    Melatonin can Ameliorate Radiation-Induced Oxidative Stress and Inflammation-Related Deterioration of Bone Quality in Rat Femur
    (Springer/Plenum Publishers, 2016) Cakir, Zelal Unlu; Demirel, Can; Kilciksiz, Sevil Cagiran; Gurgul, Serkan; Zincircioglu, S. Burhanedtin; Erdal, Nurten
    The aim of the present study was to evaluate the radioprotective effects of melatonin on the biomechanical properties of bone in comparison to amifostine (WR-2721). Forty Sprague Dawley rats were divided equally into 5 groups namely; control (C), irradiation (R; single dose of 50 Gy), irradiation + WR-2721 (R + WR-2721; irradiation + 200 mg/kg WR-2721) radiation + melatonin 25 mg/kg (R + M25; irradiation + 25 mg/kg melatonin), and radiation + melatonin 50 mg/kg (R + M50; irradiation + 50 mg/kg melatonin). In order to measure extrinsic (organ-level mechanical properties of bone; the ultimate strength, deformation, stiffness, energy absorption capacity) and intrinsic (tissue-level mechanical properties of bone; ultimate stress, ultimate strain, elastic modulus, toughness) features of the bone, a three-point bending (TPB) test was performed for biomechanical evaluation. In addition, a bone mineral density (BMD) test was carried out. The BMD and extrinsic properties of the diaphyseal femur were found to be significantly higher in the R + M25 group than in group R (p < 0.05). A significant increase was observed in R + M50 (p < 0.05) in comparison to group R in the cross-sectional area of the femoral shaft and elastic modulus parameter. The protective effect of melatonin was similar to that of WR-2721. Thus, biomechanical quality of irradiated bone can be ameliorated by free radical scavenger melatonin.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Role of 2.4 GHz radiofrequency radiation emitted from Wi-Fi on some miRNA and faty acids composition in brain
    (Taylor & Francis, 2022) Daşdağ, Süleyman; Akdağ, Mehmet Zülküf; Başhan, Mehmet; Kızmaz, Veysi; Erdal, Nurten; Erdal, Mehmet Emin
    The purpose of this study is to investigate the effects of 2.4 GHz Wi-Fi exposure, which is continuously used in the internet connection by mobile phones, computers and other wireless equipment, on microRNA and membrane and depot fatty acid composition of brain cells. Sixteen Wistar Albino rats were divided equally into two groups such as sham and exposure. The rats in the experimental group (n = 8) were exposed to 2.4 GHz RFR emitted from a Wi-Fi generator for 24 h/day for one year. The animals in the control group (n = 8) were kept under the same conditions as the experimental group, but the Wi-Fi generator was turned off. At the end of the study, rats were sacrificed and brains were removed to analyze miRNA expression and membrane and depot fatty acids of brain cells. We analyzed the situation of ten different miRNA expressions and nineteen fatty acid patterns in this study. We observed that long-term and excessive exposure of 2.4 GHz Wi-Fi radiation increased rno-miR-181a-5p, phosphatidylserine (PS) and triacylglycerol (TAG) in the brain. In conclusion, 2.4 GHz Wi-Fi exposure has the potential to alter rno-miR-181a-5p expression and the fatty acid percentage of some membrane lipids such as phospholipid (PL), phosphatidylserine (PS) and triacylglycerol (TAG), which are depot fats in the brain. However, the uncontrolled use of RFRs, whose use and diversity have reached incredible levels with each passing day and which are increasing in the future, may be paving the way for many diseases that we cannot connect with today.

| Dicle Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Dicle Üniversitesi, Diyarbakır, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim