Yazar "Celebi, Metin" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Cobalt nanoparticles supported on alumina nanofibers (Co/Al2O3): Cost effective catalytic system for the hydrolysis of methylamine borane(Pergamon-Elsevier Science Ltd, 2019) Baguc, Ismail Burak; Yurderi, Mehmet; Bulut, Ahmet; Celebi, Metin; Kanberoglu, Gulsah Saydan; Zahmakiran, Mehmet; Kaya, MuratAmongst different amine-borane derivatives, methylamine-borane (CH3NH2BH3) seems to be one of the capable aspirants in the storing of hydrogen attributable to its high hydrogen capacity, stability and aptitude to generate hydrogen through its catalytic hydrolysis reaction under ambient conditions. In this research paper, we report that cobalt nano-particles supported on alumina nanofibers (Co/Al2O3) are acting as active nanocatalyst for catalytic hydrolysis of methylamine-borane. Co/Al2O3 nanocatalyst was fabricated by double-solvent method followed with wet-chemical reduction, and was characterized by utilizing various spectroscopic methods and imaging techniques. The results gathered from these analyses showed that the formation Al2O3 nanofibers supported cobalt(0) nanoparticles with a mean diameter of 3.9 +/- 1.2 nm. The catalytic feat of these cobalt nanoparticles was scrutinized in the catalytic hydrolysis of methylamine-borane by considering their activity and durability performances. They achieve releasing of 3.0 equivalent of H-2 via methylamine-borane hydrolysis at room temperature (initial TOF = 297 mol H-2/mol metal x h). Along with activity the catalytic durability of Co/Al2O3 was also studied by carrying out recyclability tests and it was found that these supported cobalt nanoparticles have good durability during the course of the catalytic recycles so that Co/Al2O3 preserves almost its innate activity at 5th catalytic recycle. The studies presented here also contains kinetic investigation of Co/Al2O3 catalyzed methylamine borane hydrolysis depending on the temperature, cobalt and methylamine borane concentrations, which were used to define rate expression and the activation energy of the catalytic reaction. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.Öğe Effects of the r-GO doping on the structural, optical and electrical properties of CdO nanostructured films by ultrasonic spray pyrolysis(Springer, 2020) Imer, Arife Gencer; Gulcan, Mehmet; Celebi, Metin; Tombak, Ahmet; Ocak, Yusuf SelimUndoped and reduced graphene oxide (r-GO)-doped CdO films were prepared via the ultrasonic spray pyrolysis method with weight ratios of 1, 3 and 5% onto substrates. The successfully prepared films were characterized to understand the influence of r-GO dopant content on the morphological, structural, electrical and optical properties of the films by several diagnostic techniques. XRD measurement confirms that all the films were polycrystalline in the cubic phase of CdO with the preferred orientation (111). The optical band gap of the films decreases with the increase in doping amount. The r-GO@CdO nanostructured films were used as an interfacial layer to fabricate the heterojunction device and to investigate their electrical properties using current-voltage and capacitance-voltage measurements in the dark. The rectification properties of the studied devices increase with the r-GO dopant amount. The obtained results indicate that the r-GO content in the CdO films is responsible for the modification of physical properties of electronic device.