Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Cekic, B." seçeneğine göre listele

Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Existence and Localization Results for p(x)-Laplacian via Topological Methods
    (Hindawi Publishing Corporation, 2010) Cekic, B.; Mashiyev, R. A.
    We show the existence of a week solution in W(0)(1,p(x)) (Omega) to a Dirichlet problem for -Delta(p(x))u = f(x, u) in Omega, and its localization. This approach is based on the nonlinear alternative of Leray-Schauder.
  • [ X ]
    Öğe
    Existence and multiplicity of weak solutions for nonuniformly elliptic equations with nonstandard growth condition
    (Taylor & Francis Ltd, 2012) Mashiyev, R. A.; Cekic, B.; Avci, M.; Yucedag, Z.
    We discuss the problem - div(a(x, del u)) = m(x)vertical bar u vertical bar(r(x)-2) u + n(x)vertical bar u vertical bar(s(x)-2)u in Omega, where Omega is a bounded domain with smooth boundary in R-N(N >= 2), and div(a(x, del u)) is a p(x)-Laplace type operator with 1 < r(x)< p(x)< s(x). We show the existence of infinitely many nontrivial weak solutions in W-0(1,p(x))(Omega). Our approach relies on the theory of the variable exponent Lebesgue and Sobolev spaces combined with adequate variational methods and a variation of the Mountain Pass lemma and critical point theory.
  • [ X ]
    Öğe
    Existence of solutions for p(x)-Laplacian equations
    (Univ Szeged, Bolyai Institute, 2010) Mashiyev, R. A.; Cekic, B.; Buhrii, O. M.
    We discuss the problem {-div (vertical bar Delta(u)vertical bar(p(x)-2)del(u))=lambda(a(x)vertical bar u vertical bar(q(x)-2) u + b(x)vertical bar u vertical bar(h(x)-2)u), for x is an element of Omega, u=0, for x is an element of partial derivative Omega. where Omega is a bounded domain with smooth boundary in R-N (N >= 2) and p is Lipschitz continuous, q and h are continuous functions on (Omega) over bar such that 1 < q(x) < p(x) < h(x) < p*(x) and p(x) < N. We show the existence of at least one nontrivial weak solution. Our approach relies on the variable exponent theory of Lebesgue and Sobolev spaces combined with adequate variational methods and the Mountain Pass Theorem.
  • [ X ]
    Öğe
    Hardy's inequality in power-type weighted LP(•) (0, ?) spaces
    (Academic Press Inc Elsevier Science, 2007) Mashiyev, R. A.; Cekic, B.; Mamedov, F. I.; Ogras, S.
    In this article, our aim is to prove Hardy's inequality in power-type weighted L-p(.) (0, infinity) spaces by obtaining regularity condition on the exponents p(.), q(.) and alpha(.) defined at every point of the domain of test function with u(0) = 0 (or vanishing at infinity) under the log-Holder continuity conditions at the origin and infinity. (c) 2006 Elsevier Inc. All rights reserved.
  • [ X ]
    Öğe
    Lp(x)(?)-estimates of vector fields and some applications to magnetostatics problems
    (Academic Press Inc Elsevier Science, 2012) Cekic, B.; Kalinin, A. V.; Mashiyev, R. A.; Avci, M.
    the present paper, we investigate Holder-type norm inequalities in terms of div and curl of the vector-valued functions in variable exponent Lebesgue spaces LP(x)(Omega), where Omega subset of R-3. Moreover, by using the obtained results we give some applications for magnetostatics problems. (C) 2011 Elsevier Inc. All rights reserved.

| Dicle Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Dicle Üniversitesi, Diyarbakır, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim