Yazar "Basarslan, Seyit Kagan" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe The effects of erythropoietin, dextran and saline on brain edema and lipid peroxidation in experimental head trauma(Turkish Assoc Trauma Emergency Surgery, 2015) Basarslan, Seyit Kagan; Gocmez, Cuneyt; Kamasak, Kagan; Ekici, Mehmet Ali; Ulutabanca, Halil; Dogu, Yurdaer; Menku, AhmetBACKGROUND: The aim of this study was to investigate the protective effects of erythropoietin, dextran/saline and erythropoietin in combination with dextran/saline on brain edema and lipid peroxidation following traumatic brain injury in rats. METHODS: In the study, 40 male 3-month-old albino Wistar rats, weighing 250-340 g, were divided into four groups, each consisting of ten rats. Traumatic brain injury was induced in all rats by the weight drop method, and erythropoietin (5,000 U/kg) and/or dextran and saline (8 ml/kg) solutions were injected intraperitoneally ten minutes after trauma. Control animals received an equal volume of serum physiologic. All rats were sacrificed 24 hours later. Glutathione peroxidase activity and malondialdehyde levels were measured in the left hemisphere, and edema was quantitated by the wet dry method. RESULTS: Brain edema and the levels of malondialdehyde, the last product of lipid peroxidation in tissues, were decreased variably, and the activity of glutathione peroxidase, an antioxidant enzyme, was increased in others compared with the control group. CONCLUSION: In this study, it was concluded that the brain edema that developed in rats on which head trauma was induced and the secondary brain damage caused by oxidative stress could be deceased using a combination of erythropoietin, dextran, and saline.Öğe Protective Effects of Intralipid and Caffeic Acid Phenyl Esther (CAPE) on Neurotoxicity Induced by Ethanol in Rats(Turkish Neurosurgical Soc, 2017) Basarslan, Seyit Kagan; Osun, Arif; Senol, Serkan; Korkmaz, Murat; Ozkan, Umit; Kaplan, IbrahimAIM: Ethanol causes oxidative degradation of the mitochondria! genome in the brain. This effect could contribute to the development of brain injury in some alcoholic patients. We investigated the protective effect of caffeic acid phenyl esther (CAPE) and intralipid (IL) on oxidative stress and neurotoxicity induced by ethanol intake. MATERIAL and METHODS: The forty-eight rats were randomly divided into seven groups. Ethanol was administered for acute toxicity. IL and CAPE were administered immediately after ethanol intake. Total oxidant status (TOS), total antioxidant status (TAS), and oxidative status index (OSi) were evaluated and histologic examination of cerebellum and brain tissue with Hematoxylin-Eosin and immuno-histochemical dyes was performed. RESULTS: In the ethanol group, TAS levels were significantly lower than the other groups and this finding indicates that the toxic effect of ethanol reduces antioxidant levels. In the ethanol group, TOS levels were significantly higher than the other groups. These results showed that ethanol induced oxidative stress. IL treatment increased TAS levels, and CAPE decreased TOS levels against ethanol toxicity. There was correlation between TAS and TOS levels. Also, histopathologic results confirmed these biochemical results. CONCLUSION: CAPE and IL treatment could be effective course of therapy to enhance therapeutic efficacy and may provide a promising approach for the treatment of neurotoxicity and oxidative stress induced by ethanol in clinic.