Yazar "Arseri̇m, Muhammet Ali" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Investigation of Dunaliella salina microalgae as an effective dual-function material for hydrogen production and supercapacitor applications(Elsevier Ltd., 2023) Çeti̇n, Rıdvan; Kaya, Mustafa; Akdemi̇r, Murat; Arseri̇m, Muhammet Ali; Abut, SerdarToday, population growth, industrialization and economic growth increase the consumption of fossil fuels to meet the energy demand. The scarcity of fossil fuels and the harmful gases they generate increase the interest in renewable energy sources. One of these sources is hydrogen energy, which is plentiful in nature and has no negative environmental effects. Sodium borohydride (NaBH4) is a good source of hydrogen, but a catalyst must used for methanolysis. Besides producing energy, it is also important to store it. Supercapacitors are a good alternative to energy storage elements due to their outstanding advantages. In this work, Dunaliella salina (DS) microalgae were used as substrate to synthesize activated carbon for the first time to develop materials that can operate both as a catalyst and an electrode material for supercapacitors. The activated carbon was obtained by carbonization and activation and the taguchi experimental approach was used to minimize the number of experiments. The best hydrogen production rate (HPR) result for DS-9 catalyst with 0.10 g catalyst and 0.25 g NaBH4 at ambient temperature of 60 °C was determined to be 13,085 mL min−1gcat−1. The material with the best HPR value was then used as the electrode material for supercapacitor design. The specific capacitance value for 1 A/g was determined using galvanostatic charge-discharge (GCD) curves to be 216 F/g. In addition, the produced supercapacitor has an energy density of 13.80 W h/kg at a power density of 480 W/kg. The results indicate that the ecologically friendly and cost effective bifunctional materials produced can be used both in reuse of organic wastes and in catalyst and supercapacitor applications.Öğe Mobile robot application with hierarchical start position DQN(Hindawi Limited, 2022) Erkan, Emre; Arseri̇m, Muhammet AliAdvances in deep learning significantly affect reinforcement learning, which results in the emergence of Deep RL (DRL). DRL does not need a data set and has the potential beyond the performance of human experts, resulting in significant developments in the field of artificial intelligence. However, because a DRL agent has to interact with the environment a lot while it is trained, it is difficult to be trained directly in the real environment due to the long training time, high cost, and possible material damage. Therefore, most or all of the training of DRL agents for real-world applications is conducted in virtual environments. This study focused on the difficulty in a mobile robot to reach its target by making a path plan in a real-world environment. The Minimalistic Gridworld virtual environment has been used for training the DRL agent, and to our knowledge, we have implemented the first real-world implementation for this environment. A DRL algorithm with higher performance than the classical Deep Q-network algorithm was created with the expanded environment. A mobile robot was designed for use in a real-world application. To match the virtual environment with the real environment, algorithms that can detect the position of the mobile robot and the target, as well as the rotation of the mobile robot, were created. As a result, a DRL-based mobile robot was developed that uses only the top view of the environment and can reach its target regardless of its initial position and rotation.Öğe A novel study for supercapacitor applications via corona discharge modified activated carbon derived from Dunaliella salina microalgae(Elsevier Ltd., 2023) Çetin, Rıdvan; Arseri̇m, Muhammet Ali; Akdemir, MuratChemical activation factors including type of chemical agent and amount of agent, as well as carbonization procedures like burning temperature and burning time, have an impact on the surface characteristics of activated carbon. In this study, Dunaliella Salina microalgae was converted to supercapacitor electrode materials for the first time by using multiple parameters such as chemical agent, amount of chemical agent, burning temperature, and burning time, and then new electrode materials were obtained by applying different activation with the help of electrical corona discharge. Dunaliella Salina microalgae were used as activated carbon in accordance with the experimental protocol designed by the Taguchi L9 (3,4) technique. Specific capacitance values of each supercapacitor electrode material were subjected to a linear regression model to determine the effect of each parameter. It has been found that the parameter with the most significant positive effect on the specific capacitance value is the burning temperature. The surface properties of MAD-3, which has the best specific capacitance value of 284.86 F/g, were further improved by being exposed to corona discharge at different frequency values in a two-electrode system. The best specific capacitance value was measured as 335.23 F/g for the MAD-C50 under the condition that the frequency of the application voltage is 50 Hz. In addition, SEM-EDS, and XRD analyses were performed and BET measurements showed that the corona discharge method increased the pore volume and surface area of activated carbon more than 1.6 times.