Yazar "Aktekeli, Burak" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Experimental and numerical assessment of PV-TvsPV by using waste aluminum as an industrial symbiosis product(Pergamon-Elsevier Science Ltd, 2022) Can, Omer Faruk; Arslan, Erhan; Kosan, Meltem; Demirtas, Mehmet; Aktas, Mustafa; Aktekeli, BurakPhotovoltaic thermal (PV-T) collectors provide an advantage over normal photovoltaic (PV) module use by generating electrical energy and heat energy at the same time. In addition, it is possible to get more energy by increasing the electrical efficiency by cooling the PV module of the PV-T systems. In this study, PV-T system using waste aluminum and PV module were tested numerically and experimentally and their performances were compared with each other. With 4E analysis, the advantage of PV-T system over PV module was revealed. Various configurations of the PV-T (different geometries of waste aluminum) were analyzed in CFD before the experiments were carried out. Agreement between CFD and experimental results were obtained with 6.8% average error. The PV-T system was tested under similar meteorological conditions at an airflow of 50, 75 and 100 m(3)/h. Consequently, the thermal and electrical efficiencies of the PV-T collector were determined to be 33.41%, 41.17%, 49.62% and 11.57%, 12.99%, 13.17%, respectively. On the other hand, the electrical efficiencies of the PV module under the same condition were calculated as 10.96%, 12.04%, 11.74%. Thanks to the using waste aluminum the PV-T module was cooled to 6.79 degrees C and it has been obtained more 16.78% in electrical efficiency.Öğe Numerical and experimental assessment of a photovoltaic thermal collector using variable air volume(Elsevier Ltd., 2023) Arslan, Erhan; Can, Ömer Faruk; Koşan, Meltem; Demirtaş, Mehmet; Aktekeli, Burak; Aktaş, MustafaPhotovoltaic thermal collectors (PV-T’s) produce both thermal and electrical power simultaneously by using solar radiation. In this study, a new type of air-cooled PV-T’s with copper fins was designed and tested with variable airflows to control voltage of the fans (6, 8, 10, 12 V) electrical and thermal loads in solar photovoltaic (PV) systems. The novelty of this research is to design a fin with an increasing number of holes and rising height from the inlet to the outlet of the PV-T. In this way, it is aimed to enhance the heat transfer by increasing the turbulence of the air in the PV-T and to cool the PV-T homogeneously. As a result, average thermal, electrical, exergy and enviroeconomic efficiency of the experiments were found as 32.71 %, 12.77 %, 12.97 % and 0.76 kgCO2/h for PV-T panels. Due to cooling of PV with air circulation, 0.38 % increase in electrical efficiency was achieved. The surface temperatures PV-T panels were obtained with 3.2 % error rate by using computational fluid dynamic (CFD) before the experiments. The amount of power consumed by the fans against the increased electrical power was determined as 16.1 % and 4.4 % for the 12 and 6 V experiments, respectively. As a result, increasing the voltage of the fans increased both thermal and electrical performance and the best results were obtained in 12 V experiments. The outputs obtained about the PV-T collector for sustainable energy systems will contribute to researchers and industry in this field.